生成对抗网络和对抗神经网络
如果您最近一直在关注人工智能(AI)新闻媒体,则可能听说过Google的顶级AI人物之一Ian Goodfellow于三月份移居了Apple 。 Goodfellow在2017年被麻省理工学院评为35岁以下创新者之一,在2019年被外交政策杂志评为100位全球思想家之一。他还被称为机器学习概念之父,称为生成对抗网络(GAN) 。 Facebook AI主管Yann LeCun表示,GAN是“过去10年机器学习中最有趣的想法”。
几乎每个人都知道机器学习领域现在有多热。 Google正在做机器学习。 亚马逊正在进行机器学习。 Facebook正在进行机器学习。 星球上的每个公司都想对机器学习有所作为。 美国商人,投资者(包括在《 鲨鱼坦克》真人秀中)和达拉斯小牛NBA球队的老板马克·库班(Mark Cuban)最近表示, 每个人都应该学习机器学习 。
如果机器学习是我们应该学习的东西,而GAN是机器学习中最热门的想法,那么可以肯定的是,更多地了解GAN是个好主意。
互联网上有很多有趣的文章,视频和其他学习材料可以解释GAN。 本文是GAN和一些开源项目和资源的非常入门的指南,您可以在其中扩展您对GAN和机器学习的知识。
如果您想快速入门,我强烈建议您从斯坦福大学在YouTube上有关生成模型的讲座开始。 同样,Ian Goodfellow的原始论文“ Generative Adversarial Networks ”也可以PDF格式下载。 否则,请继续阅读一些背景信息以及其他对您有帮助的工具和资源。
统计分类模型
在学习GAN之前,
本文介绍了生成对抗网络(GAN),它是由Ian Goodfellow提出的机器学习概念,被认为是过去10年里最有趣的机器学习想法。GAN结合了判别模型和生成模型,用于创造新的数据。文章提供了机器学习的基础知识,以及如何入门GAN的资源,包括开源代码和各种应用场景,如字体生成、动漫角色生成等。
最低0.47元/天 解锁文章
3万+

被折叠的 条评论
为什么被折叠?



