布尔代数_布尔代数中的最小和最大项符号

布尔代数中的最小项(Minterm)和最大项(Maxterm)是规范SOP和POS形式的基础。每个乘积项是minterm,用二进制数表示,而每个和项是maxterm,同样以二进制数呈现。对于n变量逻辑函数,有2^n个最小项和最大项。真值表中,输出为1对应minterm,输出为0对应maxterm。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

布尔代数

In short or for convenience purposes, we represent canonical SOP/POS form in min/max terms.

简而言之或为方便起见,我们以最小/最大术语表示规范的SOP / POS形式

最小项 (Minterm)

Each of the product terms in the canonical SOP form is called a minterm. Minterm are represented as binary numbers in terms of 0s and 1s. The binary words are formed by representing each non-complemented variable by 1 and each complemented variable by 0, and the decimal equivalent of this binary word is represented as a subscript of m as m0, m1, m2, etc. We generally use the ∑ (sigma) notation to represent minterms.

规范SOP形式的每个乘积项称为minterm最小项以0和1表示为二进制数。 通过用1表示每个非互补变量和用0表示每个互补变量来形成二进制字,并且将该二进制字的十进制等效形式表示为m的下标,分别为m 0m 1m 2等。使用∑(sigma)表示最小项

最大期限 (Maxterm)

Each of the sum terms in the canonical POS form is called a maxterm. Maxterm can also be represented using binary numbers where each non-complemented variable is represented using 0 and complemented variable using 1, and the decimal equivalent of this binary word is represented as a subscript of M as M0, M2, M2, etc. We generally use ∏ (pi) notation to represent the max terms.

规范POS形式的每个总和项称为maxtermMaxterm也可以用二进制数表示,其中每个非补变量用0表示,补数使用1表示 ,并且该二进制字的十进制等效形式表示为M的下标M 0M 2M 2等。我们通常使用∏(pi)表示法来表示最大项

Note: For n-variable logic function there are 2n minterms and 2n maxterms.

注意:对于n变量逻辑函数,有2 n个最小项和2 n个最大项

两个文字二进制表达式的最小和最大项 (Min and Max terms for two literal binary expressions)

Input Variable (A)Input Variable (B)MintermMinterm notationMaxtermMaxterm notation
00A.Bm0A+BM0
01A.Bm1A+BM1
10A.Bm2A+BM2
11A.Bm3A+BM3
输入变量(A) 输入变量(B) 最小项 最小符号 最大期限 Maxterm表示法
0 0 A. 乙 m 0 A + B M 0
0 1个 A .B m1 A + B 1号
1个 0 A,B 2 A + B 2号
1个 1个 AB 3 A + B M 3

三种文字二进制表达式的最小和最大项 (Min and Max terms for three literal binary expressions)

Input Variable (A)Input Variable (B)Input Variable (C)MintermMinterm notationMaxtermMaxterm notation
000A.B.Cm0A+B+CM0
001A.B.Cm1A+B+CM1
010A.B.Cm2A+B+CM2
011A.B.Cm3A+B+CM3
100A.B.Cm4A+B+CM4
101A.B.Cm5A+B+CM5
110A.B Cm6A+B+CM6
111A.B.Cm7A+B+CM7
输入变量(A) 输入变量(B) 输入变量(C) 最小项 最小符号 最大期限 Maxterm表示法
0 0 0 A. B. C m 0 A + B + C M 0
0 0 1个 A. 乙 .C 1 A + B + C 1号
0 1个 0 一个 .B。 C 2 A + B + C 2号
0 1个 1个 一个 .BC 3 A + B + C M 3
1个 0 0 A. B。 C 4 A + B + C M 4
1个 0 1个 A,B .C 5 A + B + C 5号
1个 1个 0 AB C 6 A + B + C M 6
1个 1个 1个 美国广播公司 7 A + B + C M 7

Example: Express the following in corresponding minterm and maxterm expression

示例:在相应的最小项和最大项表达式中表达以下内容

  1. Y = ABC + A.B.C + A.B. C + A. B. C

    Y = ABC + A + .BC A,B。 C + A,B。 C

  2. Y= (A+B+C) (A+ B+C) (A+ B+ C)

    Y =(A + B + C)( A + B + C )( A + B + C )

Solution (a):

解决方案(a):

Y = ABC + A. B.C + A.B. C + A. B. C , is an example of canonical SOP expression, so its each term can be represented in minterm notation. Therefore,

Y = ABC + A。 BC + A,B。 C + A,B。 C是标准SOP表达式的一个示例,因此它的每个术语都可以用最小项表示法表示。 因此,

    Y = ABC + A. B.C + A.B. C + A. B. C
    = m7 + m3 + m5 + m4
    = ∑m (3, 4, 5, 7)		[ ∑ is used to denote CSOP]

Solution (b):

解决方案(b):

Y= (A+B+C) (A+ B+ C) (A+ B+ C), is an example of canonical POS expression, so its each term can be represented in maxterm notation.

Y =(A + B + C)( A + B + C )( A + B + C )是规范POS表达式的示例,因此其每个项都可以用maxterm表示法表示。

    Y= (A+B+C) (A+ B+ C) (A+ B+ C)
    = M0 + M5 + M7
    = ∏M (0, 5, 7)		[ ∏ is used to denote CPOS]

Note: If a truth table is given, and if the output is 1 then it corresponds to minterm and in case the output is 0 then it corresponds to 0.

注意:如果给出了真值表,并且如果输出为1,则它对应于minterm;如果输出为0,则其对应于0。

Input Variable (A)Input Variable (B)Input Variable (C)Output (Y)
0000
0010
0101
0110
1000
1011
1101
1111
输入变量(A) 输入变量(B) 输入变量(C) 输出(Y)
0 0 0 0
0 0 1个 0
0 1个 0 1个
0 1个 1个 0
1个 0 0 0
1个 0 1个 1个
1个 1个 0 1个
1个 1个 1个 1个

In the above truth table, the minterms will be m2, m5, m6 and m7 i.e.,

在上面的真值表中,最小项将是m 2 ,m 5 ,m 6和m 7,

    F = ∑m (2, 5,6, 7)

and maxterms will be M0, M1, M3 and M4 i.e.,

maxterms将是M 0 ,M 1 ,M 3和M 4,

    F = ∏M (0, 1, 3, 4)

Hence, from this we can conclude there is a complementary relationship between CSOP and CPOS.

因此 ,由此我们可以得出结论,CSOP和CPOS之间存在互补关系。

翻译自: https://www.includehelp.com/basics/min-and-max-terms-notation-in-boolean-algebra.aspx

布尔代数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值