算法:灰色二进制代码-一种不同的数字排序方式

本文介绍了格雷二进制代码的概念,它使得相邻数字之间仅有一位不同,常用于错误纠正。通过递归公式展示了如何生成指定长度的格雷码,并提供了从二进制数转换为格雷码的方法。此外,还提到了一种更快的生成格雷码的算法,并提及Donald Knuth在计算机程序设计艺术中的相关算法。
摘要由CSDN通过智能技术生成

Gray binary code is a way of expressing binary numbers such that consecutive numbers differ in exactly 1 digit.
For example, in our conventional binary system, the numbers are

  • 000001010011100101110111等

在Gray中,它们是:

  • 000001011010110111101100等

在第一个系统中,当我们从'001'到'010'时,有2个变化,即单位的位置从'1'变为'0',下一个数字从'0'变为'1'。 但是在Gray的系统中,“ 001”变为“ 011”,其中只有1个更改(第二个数字的更改)。

格雷码用于通信中的错误纠正。

生成长度为n的格雷码

我们是否可以使用某个属性轻松生成给定长度的格雷码? 是! 在前面的示例中,我们生成了n = 3的所有格雷码。 忽略最高有效位(MSB),请注意第4个和第5个数字的前两位数字如何相等,第3个和第6个数字,第2个和第7个数字以及第1个和第8个数字也是如此。 最后4个数字是反射如果忽略最后一位,则为前4位。 但是最后一位数字是第一个4数字为0,最后四个数字为1 ...我们有一个递归公式。

R(0)= [] R(n + 1)= 0R(n)+ 1R'(n)(R'(n)= R(n)的倒数) 对于n = 0,我们有一个空列表。 对于n + 1,我们取R(n),将0附加到所有元素上,并向此序列添加以1附加的R(n)的倒数。

可以用Python简洁地表示为:

def gray_code(n):
    if n <= 0:
        return []
    if n == 1:
        return ['0', '1'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值