时间序列-前移验证

时间序列建模中,前移验证能提高预测准确性。随着新数据的可用,模型会重新训练,确保预测效果。通过一步前移验证,模型表现提升,预测值与实际值接近。该方法适用于ARIMA等模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

时间序列-前移验证 (Time Series - Walk Forward Validation)

In time series modelling, the predictions over time become less and less accurate and hence it is a more realistic approach to re-train the model with actual data as it gets available for further predictions. Since training of statistical models are not time consuming, walk-forward validation is the most preferred solution to get most accurate results.

在时间序列建模中,随着时间的推移,预测变得越来越不准确,因此,当模型可用于进一步的预测时,采用实际数据重新训练模型是一种更为现实的方法。 由于训练统计模型并不耗时,因此,前向验证是获得最准确结果的最优选解决方案。

Let us apply one step walk forward validation on our data and compare it with the results we got earlier.

让我们对数据进行一步向前验证,并将其与我们之前获得的结果进行比较。

In [333]:

在[333]中:


prediction = []
data = train.values
for t In test.values:
   model = (
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值