JS常用算法(转)

这篇文章主要介绍了javascript常用算法,结合实例形式较为详细的分析总结了JavaScript中常见的各种排序算法以及堆、栈、链表等数据结构的相关实现与使用技巧,需要的朋友可以参考下

本文实例讲述了javascript常用算法。分享给大家供大家参考,具体如下:

入门级算法-线性查找-时间复杂度O(n)–相当于算法界中的HelloWorld

?
1
2
3
4
5
6
7
8
9
10
//线性搜索(入门HelloWorld)
//A为数组,x为要搜索的值
function linearSearch(A, x) {
   for ( var i = 0; i < A.length; i++) {
     if (A[i] == x) {
       return i;
     }
   }
   return -1;
}

二分查找(又称折半查找) - 适用于已排好序的线性结构 - 时间复杂度O(logN)

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
//二分搜索
//A为已按"升序排列"的数组,x为要查询的元素
//返回目标元素的下标
function binarySearch(A, x) {
   var low = 0, high = A.length - 1;
   while (low <= high) {
     var mid = Math.floor((low + high) / 2); //下取整  
     if (x == A[mid]) {
       return mid;
     }
     if (x < A[mid]) {
       high = mid - 1;
     }
     else {
       low = mid + 1;
     }
   }
   return -1;
}

冒泡排序 – 时间复杂度O(n^2)

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
//冒泡排序
function bubbleSort(A) {
   for ( var i = 0; i < A.length; i++) {
     var sorted = true ;
   //注意:内循环是倒着来的
     for ( var j = A.length - 1; j > i; j--) {
       if (A[j] < A[j - 1]) {
         swap(A, j, j - 1);
         sorted = false ;
       }
     }
     if (sorted) {
       return ;
     }
   }
}

选择排序 – 时间复杂度O(n^2)

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
//选择排序
//思路:找到最小值的下标记下来,再交换
function selectionSort(A) {
   for ( var i = 0; i < A.length - 1; i++) {
     var k = i;
     for ( var j = i + 1; j < A.length; j++) {
       if (A[j] < A[k]) {
         k = j;
       }
     }
     if (k != i) {
       var t = A[k];
       A[k] = A[i];
       A[i] = t;
       println(A);
     }
   }
   return A;
}

插入排序 – 时间复杂度O(n^2)

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
//插入排序
//假定当前元素之前的元素已经排好序,先把自己的位置空出来,
//然后前面比自己大的元素依次向后移,直到空出一个"坑",
//然后把目标元素插入"坑"中
function insertSort(A) {
   for ( var i = 1; i < A.length; i++) {
     var x = A[i];
     for ( var j = i - 1; j >= 0 && A[j] > x; j--) {
       A[j + 1] = A[j];
     }
     if (A[j + 1] != x) {
       A[j + 1] = x;
       println(A);
     }
   }
   return A;
}

字符串反转 – 时间复杂度O(logN)

?
1
2
3
4
5
6
7
8
9
10
11
12
13
//字符串反转(比如:ABC -> CBA)
function inverse(s) {
   var arr = s.split( '' );
   var i = 0, j = arr.length - 1;
   while (i < j) {
     var t = arr[i];
     arr[i] = arr[j];
     arr[j] = t;
     i++;
     j--;
   }
   return arr.join( '' );
}

关于稳定性排序的一个结论:

基于比较的简单排序算法,即时间复杂度为O(N^2)的排序算法,通常可认为均是稳定排序
其它先进的排序算法,比如归并排序、堆排序、桶排序之类(通常这类算法的时间复杂度可优化为n*LogN),通常可认为均是不稳定排序

单链表实现

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
<script type= "text/javascript" >
   function print(msg) {
     document.write(msg);
   }
   function println(msg) {
     print(msg + "<br/>" );
   }
   //节点类
   var Node = function (v) {
     this .data = v; //节点值
     this .next = null ; //后继节点
   }
   //单链表
   var SingleLink = function () {
     this .head = new Node( null ); //约定头节点仅占位,不存值
     //插入节点
     this .insert = function (v) {
       var p = this .head;
       while (p.next != null ) {
         p = p.next;
       }
       p.next = new Node(v);
     }
     //删除指定位置的节点
     this .removeAt = function (n) {
       if (n <= 0) {
         return ;
       }
       var preNode = this .getNodeByIndex(n - 1);
       preNode.next = preNode.next.next;
     }
     //取第N个位置的节点(约定头节点为第0个位置)
     //N大于链表元素个数时,返回最后一个元素
     this .getNodeByIndex = function (n) {
       var p = this .head;
       var i = 0;
       while (p.next != null && i < n) {
         p = p.next;
         i++;
       }
       return p;
     }
     //查询值为V的节点,
     //如果链表中有多个相同值的节点,
     //返回第一个找到的
     this .getNodeByValue = function (v) {
       var p = this .head;
       while (p.next != null ) {
         p = p.next;
         if (p.data == v) {
           return p;
         }
       }
       return null ;
     }
     //打印输出所有节点
     this .print = function () {
       var p = this .head;
       while (p.next != null ) {
         p = p.next;
         print(p.data + " " );
       }
       println( "" );
     }
   }
   //测试单链表L中是否有重复元素
   function hasSameValueNode(singleLink) {
     var i = singleLink.head;
     while (i.next != null ) {
       i = i.next;
       var j = i;
       while (j.next != null ) {
         j = j.next;
         if (i.data == j.data) {
           return true ;
         }
       }
     }
     return false ;
   }
   //单链表元素反转
   function reverseSingleLink(singleLink) {
     var arr = new Array();
     var p = singleLink.head;
     //先跑一遍,把所有节点放入数组
     while (p.next != null ) {
       p = p.next;
       arr.push(p.data);
     }
     var newLink = new SingleLink();
     //再从后向前遍历数组,加入新链表
     for ( var i = arr.length - 1; i >= 0; i--) {
       newLink.insert(arr[i]);
     }
     return newLink;
   }
   var linkTest = new SingleLink();
   linkTest.insert( 'A' );
   linkTest.insert( 'B' );
   linkTest.insert( 'C' );
   linkTest.insert( 'D' );
   linkTest.print(); //A B C D
   var newLink = reverseSingleLink(linkTest);
   newLink.print(); //D C B A
</script>

关于邻接矩阵、邻接表的选择:

邻接矩阵、邻接表都是图的基本存储方式,
稀松图情况下(即边远小于顶点情况下),用邻接表存储比较适合(相对矩阵N*N而言,邻接表只存储有值的边、顶点,不存储空值,存储效率更高)
稠密图情况下(即边远大地顶点情况下),用邻接矩阵存储比较适合(数据较多的情况下,要对较做遍历,如果用链表存储,要经常跳来跳去,效率较低)

堆:

几乎完全的二叉树:除了最右边位置上的一个或几个叶子可能缺少的二叉树。在物理存储上,可以用数组来存储,如果A[j]的顶点有左、右子节点,则左节点为A[2j]、右节点为A[2j+1],A[j]的父顶点存储在A[j/2]中

堆:本身是一颗几乎完全的二叉树,而且父节点的值不小于子节点的值。应用场景:优先队列,寻找最大或次最大值;以及把一个新元素插入优先队列。

注:以下所有讨论的堆,约定索引0处的元素仅占位,有效元素从下标1开始

根据堆的定义,可以用以下代码测试一个数组是否为堆:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
//测试数组H是否为堆
//(约定有效元素从下标1开始)
//时间复杂度O(n)
function isHeap(H) {
   if (H.length <= 1) { return false ; }
   var half = Math.floor(H.length / 2); //根据堆的性质,循环上限只取一半就够了
   for ( var i = 1; i <= half; i++) {
     //如果父节点,比任何一个子节点 小,即违反堆定义
     if (H[i] < H[2 * i] || H[i] < H[2 * i + 1]) {
       return false ;
     }
   }
   return true ;
}

节点向上调整siftUp

某些情况下,如果堆中的某个元素值改变后(比如 10,8,9,7 变成 10,8,9,20 后,20需要向上调整 ),不再满足堆的定义,需要向上调整时,可以用以下代码实现

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
//堆中的节点上移
//(约定有效元素从下标1开始)
function siftUp(H, i) {
   if (i <= 1) {
     return ;
   }
   for ( var j = i; j > 1; j = Math.floor(j / 2)) {
     var k = Math.floor(j / 2);
     //发现 子节点 比 父节点大,则与父节点交换位置
     if (H[j] > H[k]) {
       var t = H[j];
       H[j] = H[k];
       H[k] = t;
     }
     else {
       //说明已经符合堆定义,调整结束,退出
       return ;
     }
   }
}

节点向下调整siftDown (既然有向上调整,自然也有向下调整)

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
//堆中的节点下移
//(约定有效元素从下标1开始)
//时间复杂度O(logN)
function siftDown(H, i) {
   if (2 * i > H.length) { //叶子节点,就不用再向下移了
     return ;
   }
   for ( var j = 2 * i; j < H.length; j = 2 * j) {
     //将j定位到 二个子节点中较大的那个上(很巧妙的做法)
     if (H[j + 1] > H[j]) {
       j++;
     }
     var k = Math.floor(j / 2);
     if (H[k] < H[j]) {
       var t = H[k];
       H[k] = H[j];
       H[j] = t;
     }
     else {
       return ;
     }
   }
}

向堆中添加新元素

?
1
2
3
4
5
6
7
8
//向堆H中添加元素x
//时间复杂度O(logN)
function insert(H, x) {
   //思路:先在数组最后加入目标元素x
   H.push(x);
   //然后向上推
   siftUp(H, H.length - 1);
}

从堆中删除元素

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
//删除堆H中指定位置i的元素
//时间复杂度O(logN)
function remove(H, i) {
   //思路:先把位置i的元素与最后位置的元素n交换
   //然后数据长度减1(这样就把i位置的元素给干掉了,但是整个堆就被破坏了)
   //需要做一个决定:最后一个元素n需要向上调整,还是向下调整
   //依据:比如比原来该位置的元素大,则向上调整,反之向下调整
   var x = H[i]; //先把原来i位置的元素保护起来
   //把最后一个元素放到i位置
   //同时删除最后一个元素(js语言的优越性体现!)
   H[i] = H.pop();
   var n = H.length - 1;
   if (i == n + 1) {
     //如果去掉的正好是最后二个元素之一,
     //无需再调整
     return ;
   }
   if (H[i] > x) {
     siftUp(H, i);
   }
   else {
     siftDown(H, i);
   }
}
//从堆中删除最大项
//返回最大值
//时间复杂度O(logN)
function deleteMax(H) {
   var x = H[1];
   remove(H, 1);
   return x;
}

堆排序

这是一种思路非常巧妙的排序算法,精华在于充分利用了“堆”这种数据结构本身的特点(首元素必然最大),而且每个元素的上移、下调,时间复试度又比较低,仅为O(logN),空间上,也无需借助额外的存储空间,仅在数组自身内部交换元素即可。

思路:

1、先将首元素(即最大元素)与最末尾的元素对调—目的在于,把最大值沉底,下一轮重就不再管它了
2、经过1后,剩下的元素通常已经不再是一个堆了。这时,只要把新的首元素用siftDown下调,调整完以后,新的最大值元素自然又上升到了首元素的位置
3、反复1、2,大的元素逐一沉底,最后整个数组就有序了。
时间复杂度分析:创建堆需要O(n)的代价,每次siftDown代价为O(logN),最多调整n-1个元素,所以总代价为 O(N) + (N-1)O(logN),最终时间复杂度为O(NLogN)

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
//堆中的节点下移
//(约定有效元素从下标1开始)
//i为要调整的元素索引
//n为待处理的有效元素下标范围上限值
//时间复杂度O(logN)
function siftDown(H, i, n) {
   if (n >= H.length) {
     n = H.length;
   }
   if (2 * i > n) { //叶子节点,就不用再向下移了
     return ;
   }
   for ( var j = 2 * i; j < n; j = 2 * j) {
     //将j定位到 二个子节点中较大的那个上(很巧妙的做法)
     if (H[j + 1] > H[j]) {
       j++;
     }
     var k = Math.floor(j / 2);
     if (H[k] < H[j]) {
       var t = H[k];
       H[k] = H[j];
       H[j] = t;
     }
     else {
       return ;
     }
   }
}
//对数组的前n个元素进行创建堆的操作
function makeHeap(A, n) {
   if (n >= A.length) {
     n = A.length;
   }
   for ( var i = Math.floor(n / 2); i >= 1; i--) {
     siftDown(A, i, n);
   }
}
//堆排序(非降序排列)
//时间复杂度O(nlogN)
function heapSort(H) {
   //先建堆
   makeHeap(H, H.length);
   for ( var j = H.length - 1; j >= 2; j--) {
     //首元素必然是最大的
     //将最大元素与最后一个元素互换,
     //即将最大元素沉底,下一轮不再考虑
     var x = H[1];
     H[1] = H[j];
     H[j] = x;
     //互换后,剩下的元素不再满足堆定义,
     //把新的首元素下调(以便继续维持堆的"形状")
     //调整完后,剩下元素中的最大值必须又浮到了第一位
     //进入下一轮循环
     siftDown(H, 1, j - 1);
   }
   return H;
}

关于建堆,如果明白其中的原理后,也可以逆向思路,反过来做

?
1
2
3
4
5
6
7
8
function makeHeap2(A, n) {
   if (n >= A.length) {
     n = A.length;
   }
   for ( var i = Math.floor(n / 2); i <= n; i++) {
     siftUp(A, i);
   }
}

不相交集合查找、合并

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
//定义节点Node类
var Node = function (v, p) {
     this .value = v; //节点的值
     this .parent = p; //节点的父节点
     this .rank = 0; //节点的秩(默认为0)   
}
//查找包含节点x的树根节点
var find = function (x) {
     var y = x;
     while (y.parent != null ) {
       y = y.parent;
     }
     var root = y;
     y = x;
     //沿x到根进行“路径压缩”
     while (y.parent != null ) {
       //先把父节点保存起来,否则下一行调整后,就弄丢了
       var w = y.parent;
       //将目标节点挂到根下
       y.parent = root;
       //再将工作指针,还原到 目标节点原来的父节点上,
       //继续向上逐层压缩
       y = w
     }
     return root;
}
//合并节点x,y对应的两个树
//时间复杂度O(m) - m为待合并的子集合数量
var union = function (x, y) {
     //先找到x所属集合的根
     var u = find(x);
     //再找到y所属集合的根
     var v = find(y);
     //把rank小的集合挂到rank大的集合上
     if (u.rank <= v.rank) {
       u.parent = v;
       if (u.rank == v.rank) {
         //二个集合的rank不分伯仲时
         //给"胜"出方一点奖励,rank+1
         v.rank += 1;
       }
     }
     else {
       v.parent = u;
     }
}

归纳法

先来看二个排序的递归实现

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
//选择排序的递归实现
//调用示例: selectionSort([3,2,1],0)
function selectionSortRec(A, i) {
   var n = A.length - 1;
   if (i < n) {
     var k = i;
     for ( var j = i + 1; j <= n; j++) {
       if (A[j] < A[k]) {
         k = j
       }
     }
     if (k != i) {
       var t = A[k];
       A[k] = A[i];
       A[i] = t;
     }
     selectionSortRec(A, i + 1);
   }
}
//插入排序递归实现
//调用示例:insertSortRec([4,3,2,1],3);
function insertSortRec(A, i) {
   if (i > 0) {
     var x = A[i];
     insertSortRec(A, i - 1);
     var j = i - 1;
     while (j >= 0 && A[j] > x) {
       A[j + 1] = A[j];
       j--;
     }
     A[j + 1] = x;
   }
}

递归的程序通常易于理解,代码也容易实现,再来看二个小例子:

从数组中,找出最大值

?
1
2
3
4
5
6
7
8
9
10
11
12
//在数组中找最大值(递归实现)
function findMax(A, i) {
   if (i == 0) {
     return A[0];
   }
   var y = findMax(A, i - 1);
   var x = A[i - 1];
   return y > x ? y : x;
}
var A = [1,2,3,4,5,6,7,8,9];
var test = findMax(A,A.length);
alert(test); //返回9

有一个已经升序排序好的数组,检查数组中是否存在二个数,它们的和正好为x ?

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
//5.33 递归实现
//A为[1..n]已经排好序的数组
//x为要测试的和
//如果存在二个数的和为x,则返回true,否则返回false
function sumX(A, i, j, x) {
   if (i >= j) {
     return false ;
   }
   if (A[i] + A[j] == x) {
     return true ;
   }
   else if (A[i] + A[j] < x) {
     //i后移
     return sumX(A, i + 1, j, x);
   }
   else {
     //j前移
     return sumX(A, i, j - 1, x);
   }
}
var A = [1, 2, 3, 4, 5, 6, 7, 8];
var test1 = sumX(A,0,A.length-1,9);
alert(test1); //返回true

递归程序虽然思路清晰,但通常效率不高,一般来讲,递归实现,都可以改写成非递归实现,上面的代码也可以写成:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
//5.33 非递归实现
function sumX2(A, x) {
   var i = 0, j = A.length - 1;
   while (i < j) {
     if (A[i] + A[j] == x) {
       return true ;
     }
     else if (A[i] + A[j] < x) {
       //i后移
       i++;
     }
     else {
       //j前移
       j--;
     }
   }
   return false ;
}
var A = [1, 2, 3, 4, 5, 6, 7, 8];
var test2 = sumX2(A,9);
alert(test2); //返回true

递归并不总代表低效率,有些场景中,递归的效率反而更高,比如计算x的m次幂,常规算法,需要m次乘法运算,下面的算法,却将时间复杂度降到了O(logn)

?
1
2
3
4
5
6
7
8
9
10
11
12
13
//计算x的m次幂(递归实现)
//时间复杂度O(logn)
function expRec(x, m) {
   if (m == 0) {
     return 1;
   }
   var y = expRec(x, Math.floor(m / 2));
   y = y * y;
   if (m % 2 != 0) {
     y = x * y
   }
   return y;
}

当然,这其中并不光是递归的功劳,其效率的改进 主要依赖于一个数学常识: x^m = [x^(m/2)]^2,关于这个问题,还有一个思路很独特的非递归解法,巧妙的利用了二进制的特点

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
//将10进制数转化成2进制
function toBin(dec) {
   var bits = [];
   var dividend = dec;
   var remainder = 0;
   while (dividend >= 2) {
     remainder = dividend % 2;
     bits.push(remainder);
     dividend = (dividend - remainder) / 2;
   }
   bits.push(dividend);
   bits.reverse();
   return bits.join( "" );
}
//计算x的m次幂(非递归实现)
//很独特的一种解法
function exp(x, m) {
   var y = 1;
   var bin = toBin(m).split( '' );
   //先将m转化成2进制形式
   for ( var j = 0; j < bin.length; j++) {
     y = y * 2;
     //如果2进制的第j位是1,则再*x
     if (bin[j] == "1" ) {
       y = x * y
     }
   }
   return y;
}
//println(expRec(2, 5));
//println(exp(2, 5));

再来看看经典的多项式求值问题:

给定一串实数An,An-1,…,A1,A0 和一个实数X,计算多项式Pn(x)的值

著名的Horner公式:

已经如何计算:

显然有:

这样只需要 N次乘法+N次加法

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
//多项式求值
//N次乘法+N次加法搞定,伟大的改进!
function horner(A, x) {
   var n = A.length - 1
   var p = A[n];
   for ( var j = 0; j < n; j++) {
     p = x * p + A[n - j - 1];
   }
   return p;
}
//计算: y(2) = 3x^3 + 2x^2 + x -1;
var A = [-1, 1, 2, 3];
var y = horner(A, 2);
alert(y); //33

多数问题

一个元素个数为n的数组,希望快速找出其中大于出现次数>n/2的元素(该元素也称为多数元素)。通常可用于选票系统,快速判定某个候选人的票数是否过半。最优算法如下:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
//找出数组A中“可能存在”的多数元素
function candidate(A, m) {
   var count = 1, c = A[m], n = A.length - 1;
   while (m < n && count > 0) {
     m++;
     if (A[m] == c) {
       count++;
     }
     else {
       count--;
     }
   }
   if (m == n) {
     return c;
   }
   else {
     return candidate(A, m + 1);
   }
}
//寻找多数元素
//时间复杂度O(n)
function majority(A) {
   var c = candidate(A, 0);
   var count = 0;
   //找出的c,可能是多数元素,也可能不是,
   //必须再数一遍,以确保结果正确
   for ( var i = 0; i < A.length; i++) {
     if (A[i] == c) {
       count++;
     }
   }
   //如果过半,则确定为多数元素
   if (count > Math.floor(A.length / 2)) {
     return c;
   }
   return null ;
}
var m = majority([3, 2, 3, 3, 4, 3]);
alert(m);

以上算法基于这样一个结论:在原序列中去除两个不同的元素后,那么在原序列中的多数元素在新序列中还是多数元素

证明如下:

如果原序列的元素个数为n,多数元素出现的次数为x,则 x/n > 1/2
去掉二个不同的元素后,
a)如果去掉的元素中不包括多数元素,则新序列中 ,原先的多数元素个数/新序列元素总数 = x/(n-2) ,因为x/n > 1/2 ,所以 x/(n-2) 也必然>1/2
b)如果去掉的元素中包含多数元素,则新序列中 ,原先的多数元素个数/新序列元素总数 = (x-1)/(n-2) ,因为x/n > 1/2  =》 x>n/2 代入 (x-1)/(n-2) 中,
有 (x-1)/(n-2) > (n/2 -1)/(n-2) = 2(n-2)/(n-2) = 1/2

下一个问题:全排列

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
function swap(A, i, j) {
   var t = A[i];
   A[i] = A[j];
   A[j] = t;
}
function println(msg) {
   document.write(msg + "<br/>" );
}
//全排列算法
function perm(P, m) {
   var n = P.length - 1;
   if (m == n) {
     //完成一个新排列时,输出
     println(P);
     return ;
   }
   for ( var j = m; j <= n; j++) {
     //将起始元素与后面的每个元素交换
     swap(P, j, m);
     //在前m个元素已经排好的基础上
     //再加一个元素进行新排列
     perm(P, m + 1);
     //把j与m换回来,恢复递归调用前的“现场",
     //否则因为递归调用前,swap已经将原顺序破坏了,
     //导致后面生成排序时,可能生成重复
     swap(P, j, m);
   }
}
perm([1, 2, 3], 0);
//1,2,3
//1,3,2
//2,1,3
//2,3,1
//3,2,1
//3,1,2

分治法

要点:将问题划分成二个子问题时,尽量让子问题的规模大致相等。这样才能最大程度的体现一分为二,将问题规模以对数折半缩小的优势。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
//打印输出(调试用)
function println(msg) {
   document.write(msg + "<br/>" );
}
//数组中i,j位置的元素交换(辅助函数)
function swap(A, i, j) {
   var t = A[i];
   A[i] = A[j];
   A[j] = t;
}
//寻找数组A中的最大、最小值(分治法实现)
function findMinMaxDiv(A, low, high) {
   //最小规模子问题的解
   if (high - low == 1) {
     if (A[low] < A[high]) {
       return [A[low], A[high]];
     }
     else {
       return [A[high], A[low]];
     }
   }
   var mid = Math.floor((low + high) / 2);
   //在前一半元素中寻找子问题的解
   var r1 = findMinMaxDiv(A, low, mid);
   //在后一半元素中寻找子问题的解
   var r2 = findMinMaxDiv(A, mid + 1, high);
   //把二部分的解合并
   var x = r1[0] > r2[0] ? r2[0] : r1[0];
   var y = r1[1] > r2[1] ? r1[1] : r2[1];
   return [x, y];
}
var r = findMinMaxDiv([1, 2, 3, 4, 5, 6, 7, 8], 0, 7);
println(r); //1,8
//二分搜索(分治法实现)
//输入:A为已按非降序排列的数组
//x 为要搜索的值
//low,high搜索的起、止索引范围
//返回:如果找到,返回下标,否则返回-1
function binarySearchDiv(A, x, low, high) {
   if (low > high) {
     return -1;
   }
   var mid = Math.floor((low + high) / 2);
   if (x == A[mid]) {
     return mid;
   }
   else if (x < A[mid]) {
     return binarySearchDiv(A, x, low, mid - 1);
   }
   else {
     return binarySearchDiv(A, x, mid + 1, high);
   }
}
var f = binarySearchDiv([1, 2, 3, 4, 5, 6, 7], 4, 0, 6);
println(f); //3
//将数组A,以low位置的元素为界,划分为前后二半
//n为待处理的索引范围上限
function split(A, low, n) {
   if (n >= A.length - 1) {
     n = A.length - 1;
   }
   var i = low;
   var x = A[low];
   //二个指针一前一后“跟随”,
   //最前面的指针发现有元素比分界元素小时,换到前半部
   //后面的指针再紧跟上,“夫唱妇随”一路到头
   for ( var j = low + 1; j <= n; j++) {
     if (A[j] <= x) {
       i++;
       if (i != j) {
         swap(A, i, j);
       }
     }
   }
   //经过上面的折腾后,除low元素外,其它的元素均以就位
   //最后需要把low与最后一个比low位置小的元素交换,
   //以便把low放在分水岭位置上
   swap(A, low, i);
   return [A, i];
}
var A = [5, 1, 2, 6, 3];
var b = split(A, 0, A.length - 1);
println(b[0]); //3,1,2,5,6
//快速排序
function quickSort(A, low, high) {
   var w = high;
   if (low < high) {
     var t = split(A, low, w); //分治思路,先分成二半
     w = t[1];
     //在前一半求解
     quickSort(A, low, w - 1);
     //在后一半求解
     quickSort(A, w + 1, high);
   }
}
var A = [5, 6, 4, 7, 3];
quickSort(A, 0, A.length - 1);
println(A); //3,4,5,6,7

split算法的思想应用

设A[1..n]是一个整数集,给出一算法重排数组A中元素,使得所有的负整数放到所有非负整数的左边,你的算法的运行时间应当为Θ(n)

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
function sort1(A) {
   var i = 0, j = A.length - 1;
   while (i < j) {
     if (A[i] >= 0 && A[j] >= 0) {
       j--;
     }
     else if (A[i] < 0 && A[j] < 0) {
       i++;
     }
     else if (A[i] > 0 && A[j] < 0) {
       swap(A, i, j);
       i++;
       j--;
     }
     else {
       i++;
       j--;
     }
   }
}
function sort2(A) {
   if (A.length <= 1) { return ; }
   var i = 0;
   for ( var j = i + 1; j < A.length; j++) {
     if (A[j] < 0 && A[i] >= 0) {
       swap(A, i, j);
       i++;
     }
   }
}
var a = [1, -2, 3, -4, 5, -6, 0];
sort1(a);
println(a); //-6,-2,-4,3,5,1,0
var b = [1, -2, 3, -4, 5, -6, 0];
sort2(b);
println(b); //-2,-4,-6,1,5,3,0

希望本文所述对大家JavaScript程序设计有所帮助。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值