自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 论坛 (1)

原创 特征学习“Building High-level Features Using Large Scale Unsupervised Learning”

摘要:GoogleBrain中特征学习的原理,通过使用未标记的图像学习人脸、猫脸high-level特征,得到检测器。文章使用大数据构建了一个9层的局部连接稀疏自编码网络(模型有1 billion个链接,数据有10 million 个200*200的图像)。使用模型并行化和异步SGD在1000个机器(16000核)上训练了3天,实验结果显示可以在未标记图像是否有人脸的情况下训练处一个人脸检测器。之前

2015-06-18 10:27:37 2458

原创 论文提要“Gradient based Learning Applied to Document Reocognition”

1.综述 提出好的模式识别系统多依赖自学习,少依赖手工设计框架。字符识别可以将原图像作为网络输入,代替之前设计的特征。对于文本理解,之前设计的定位分割识别模块可以使用Graph Transformer Networks 代替。下图显示了传统的识别方法: 机器运算速度的提升,大数据和机器学习算法改进改变了上述传统方法。 A. 数据学习 经典方法是基于梯度的学

2015-06-17 16:16:58 2061

原创 论文提要“Improving Object Detection with DCN via Bayesian Optimization and Structured Prediction”

2015年CVPR中的一篇文章,对R-CNN的改进和提升,主要贡献是:1)使用了贝叶斯优化提升Selective Search方法得到的proposal的准确度;2)使用了结构化的SVM框架训练CNN分类器。 1.使用贝叶斯优化对 bbox进行细粒度搜索 1)广义贝叶斯优化框架 令f(x,y)f(x,y) 表示图像x中bbox坐标为y=(u1,v1,u2,v2)∈ Yy=(u_1

2015-06-12 16:04:40 1521

原创 《nature》 机器学习的3个热门分支 “深度学习”、“增强式学习”、“概率学习” 的最新综述

《nature》 机器学习的最新的各个分支(branch of machine learning) “深度学习”、“增强式学习”、“概率学习” 的最新的综述。

2015-06-11 21:28:55 2708

原创 论文提要“Scalable Object Detection using Deep Neural Networks”

论文提要“Scalable Object Detection using Deep Neural Networks”与之前主流检测方法DPM不同,论文提出了一种名为“DeepMultiBox”的方法产生比较少量的目标候选框,这些候选框是使用DNN(Deep Neural Network)生成的与目标类别无关的区域。 1.主要贡献: 1)将目标检测定义为几个bounding bo

2015-06-11 17:03:49 3558

原创 开放模式识别和图像处理之旅

一起做图像,共同做算法,今天是个起点

2015-06-09 21:39:39 721

空空如也

cv_family_z的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也
提示
确定要删除当前文章?
取消 删除