自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 论坛 (1)

原创 BING

生成目标proposal的快速方法,为接下来的detectors提供可能的目标区域。使用归一化的梯度分辨广义目标,需要将输入图像窗口缩放到8*8,计算64d的归一化梯度特征,之后将梯度进行二值化,进行一些简单的位运算,在voc2007上训练测试,在~1000个proposal时检出率为96.2%。 方法描述: 使用BING计算图像窗口的objectness得分,为了寻找图像中的广义目标,对预定义

2015-07-29 17:06:07 1428

原创 论文提要“Visualizing and Understanding Convolutional Networks”

主要内容:提出了一种深层网络中分析特征层功能及分类器运行原理的可视化技术,通过可视化可以寻找更优的网络模型。可视化技术可以揭示网络中激活每层特征图的输入刺激,同时可以观察到训练过程中每个特征的以便诊断模型中可能存在的问题。可视化技术使用多层反卷积网络将特征激活投影回输入像素空间。此外,通过遮挡图像的部分区域分析了分类器的敏感性,揭示了对分类比较重要的场景部位。使用反卷积进行可视化 反卷积网络可认为

2015-07-20 16:24:53 951

原创 Dropout,maxout,NIN

Dropout dropout是前向网络结构中给定输入向量v,预测输出y的一种技术。网络包含一系列隐含层节点h=h(1),...,h(L)h={h^{(1)},...,h^{(L)}},Dropout是由v和h中的部分变量训练出模型的集成模型。使用θ\theta 对分布p(y|v;θ,μ)p(y|v;\theta ,\mu) 进行参数化,μ\mu 是决定包含哪些变量的二值掩码。不同子模型的实例可通

2015-07-16 17:02:37 2554

原创 Faster R-CNN

训练步骤及资源下载 http://blog.csdn.net/sinat_30071459/article/details/51332084摘要:SPPNet和Fast R-CNN降低了网络学习特征的时间,SS由于需耗时1~2s,EdgeBoxes 耗时约0.2s,提取proposal的方法成为检测的瓶颈。本文提出了Region Proposal Networks(RPNs)实现实时提取p

2015-07-13 16:44:05 6690

原创 SPPNet

CNN网络需要固定尺寸的图像输入,SPPNet将任意大小的图像池化生成固定长度的图像表示,提升R-CNN检测的速度24-102倍。固定图像尺寸输入的问题,截取的区域未涵盖整个目标或者缩放带来图像的扭曲。事实上,CNN的卷积层不需要固定尺寸的图像,全连接层是需要固定大小输入的,因此提出了SPP层放到卷积层的后面,改进后的网络如下图所示: SPP是BOW的扩展,将图像从精细空间划分到粗糙空间,之后将局

2015-07-10 16:57:48 17739 7

原创 论文提要“Delving Deep into Rectifiers”

首先对ReLU进行了改进,使用了参数化的ReLU自适应学习rectifier的参数提升准确率,即PReLU来拟合模型,另外使用了鲁棒的初始化方法考虑rectifier的非线性特性,使得深层网络能够收敛。top-5error 为4.94%,在ILSVRC上首次超越了人眼(感觉这么说还是很牵强的,后面也进行了解释)。过去几年深度学习的主要关注在构建有效的模型和设计应对过拟合的策略上,通过增加网络复杂度,

2015-07-09 17:01:41 2510

原创 论文提要“You Only Look Once: Unified, Real-Time Object Detection”

项目主页:http://pjreddie.com/darknet/yolo/这篇文章着重在检测的速度提升,区别于之前的方法是用分类器来做检测,文章对bbox和对应的类概率进行回归,检测速度可以达到45f/s,mAP与原始的R-CNN差不多。出现原因: CNN在分类上已经可以达到实时,而在检测上R-CNN需要几秒的时间处理一张图片,主要是由于proposal的提取时间需要约1~2s的时间,然后还有很

2015-07-08 14:51:39 15622 25

原创 Spatial Pyramid Matching

论文提出了一种场景归类的方法,主要通过将图像划分为精细子区域并在子区域中计算局部特征直方图实现,Spatial Pyramid是无序BOF特征的一种发展,增加了空间位置信息。Pyramid Matching Kernels 假设X和Y是d维特征空间中的两个向量集,PM通过在特征空间中设置一系列粗粒度网格并对每一层的匹配结果进行加权得到,在每个特定的分辨率下,两个点如果落在网络的同一个cell中则表

2015-07-07 13:43:10 1259

原创 论文提要“Visual Categorization with Bags of Keypoints”

‘Selective Search for Object Recognition” 文章中特征描述使用了BOW,找到这篇文章看了一下,主要是提取BOK来做广义的目标归类,分类器使用的是朴素贝叶斯和SVM,实验对七类广义目标进行归类,目标姿态不一,背景复杂,跟我们之前接触的纯目标分类有所不同,有人脸,建筑物,汽车等,如下图所示: 特征使用的是BOK,统计图像中特定模式出现次数的直方图,这里的K是ke

2015-07-03 16:42:46 1130

原创 论文提要“Selective Search for Object Recognition”

这篇2012年的IJCV使用分割和穷举搜索的方法产生目标proposal,最近出现的R-CNN就是在这些proposal上学习特征进行目标识别的,目标proposal是相对于滑动窗产生的候选框来说的,proposal的数量要少很多。区域可以归并到一起的原因有很多,如下图所示,(b)颜色,(c)纹理,(d)包含问题,车辆包含车轮等。 论文提出了一种数据驱动的SS,结合穷举搜索和多元化采样方法捕获所有

2015-07-02 15:53:09 1206

原创 论文提要"Fast R-CNN"

快速R-CNN,对R-CNN和SPPNet的加速,使用multi-task 进行单步训练,网络使用的是VGG16。R-CNN对每个proposal单独warp处理,SPPNet将warp放到最后一个卷积层的后面,将多个池化网格的结果串联到SPP中。SPPNet的微调算法只能更新全连接层,限制了深层网路VGG16发挥性能。 主要贡献: 1.比R-CNN检测率更高 2.单步训练,使用multi-c

2015-07-01 18:02:14 2487

空空如也

cv_family_z的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也
提示
确定要删除当前文章?
取消 删除