自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 论坛 (1)

原创 车型识别“A Large-Scale Car Dataset for Fine-Grained Categorization and Verification”

论文的目标如题,对车型进行精细分类,作者构建了一个比较大型的车辆数据库CompCars,涵盖不同视角,包含车辆内部及外部特征,由监控视频获得的数据和从网络上下载的数据组成。文章做了车辆型号识别,认证和属性预测三部分,训练好的模型GoogLeNet_cars在Caffe Model Zoo中。CompCars数据库 网络数据库包含163个品牌1716个车型,共136,727张整车图片,27,618张

2015-08-31 17:02:09 12735 14

原创 论文提要“Taking a Deeper Look at Pedestrians”

比较:使用CNN做行人检测,目前最好的基于convnet的行人检测方法是SDN,之前的方法没有直接使用LeNet的,本文使用该网络。目前最好的行人检测方法是基于决策树的,包括SquaresChnFtrs,InformedHaar,SpatialPooling,LDCF和Regionlets,这些方法都是ICF结构的变体。 之前的基于cnn的方法使用的是人工设计的特征,最早的方法ConvNet的输入

2015-08-28 15:53:20 2743

原创 论文提要“Hypercolumns for Object Segmentation and Fine-grained Localization”

动机: CNN网络的最后一层对类别层的语义信息比较敏感,而对扰动(姿态,光照,关节和位置)不敏感。细粒度的分析包括目标分割,姿态分析等,直接使用最后一层不是最优的选择。 最后一层的特征在空间上比较粗糙,对准确定位有影响。文章提出了超列(Hypercolumn),即对应像素的网络所有节点的激活串联作为特征,进行目标的细粒度定位:同时定位和分割SDS,关键点定位和组件标记。超列的原理图如下所示:

2015-08-26 17:01:25 7933 7

原创 论文提要“Fast Feature Pyramids for Object Detection”

很多目标检测器需要对图像进行多尺度精细搜索,传统方法的瓶颈是对每个尺度分别计算特征,本文使用比较大的间隔octave计算特征,之后对octave之间的尺度特征进行推算,节省了多尺度特征计算的时间,将目标检测提到实时。动机:目前的目标检测方法如DPM,通常需要使用多通道,精细尺度采样及增强的归一化方法提升准确率,导致计算量大大增加。自然场景图像存在碎片统计特征,可以用于不同尺度直接的结构预测。多尺度梯

2015-08-25 17:01:22 9143 9

原创 论文提要“Pedestrian Detection aided by Deep Learning Semantic Tasks”

对于行人检测,以往的深度学习将其作为二值分类问题,这样易与困难的负样本混淆。本文将行人检测细分为行人属性(背部,性别和视角)和场景属性(车辆,树木等),目标是在高层特征空间分离或聚合相似的属性结构,如图2(c)所示。 为了避免大量负样本的标记,作者使用了数据库背景场景分割的结果。提出TACNN使用多种数据库学习多类问题。不同数据的背景B数据分布不同,作者transfer了两类场景属性,包括共享的属

2015-08-03 17:47:06 2497 1

空空如也

cv_family_z的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也
提示
确定要删除当前文章?
取消 删除