自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 论坛 (1)

原创 行人检测“Pedestrian detection at 100 frames per second”

文章使用的特征是ICF,并在训练阶段进行多尺度的模型训练,将检测时间转移到训练上进行提速。 ChnFtrs检测器 Dollar提出的ICF与DPM的效果可以媲美,ICF对滤波器响应进行简单的矩形加和,行人检测使用了6 quantized orientations, 1 gradient magnitude 和 3 LUV color channels,如下图所示: 使用矩形特征构建决策树,

2015-10-29 14:33:04 4508

原创 目标检测“DPMs are CNNs”

DPMs是图形模型(Markov 随机域),CNNs是”黑盒子”非线性分类器。论文将DPM重构为CNN,将DPM算法展开,每步映射到一个相当的CNN层,将DPM使用的特征用学到的特征替换,得到DeepPyramid DPM。基于区域的检测R-CNN和基于滑动窗的方法DPM是互补的,一些物体比较容易分割,比如cats,另一些比如bottle,people难分割。DeepPyramid DPMs 输入

2015-10-27 15:56:51 2909 1

原创 行人检测“Pedestrian Detection with Unsupervised Multi-Stage Feature Learning”

主要思想: 1.结合多步的全局特征及局部特征用来分类 2.使用卷积稀疏编预训练滤波器现有的方法: 手动提取特征,如ICF,HOG及其变形和组合,使用可训练的分类器如SVM,boosted classifier或随机森林分类。 深层网络非监督预训练方法,包括RBM,stacked auto-encoders,stacked sparse auto-encoders. 非监督学习可以用来训练深

2015-10-20 14:22:08 1981

原创 车型识别“Vehicle Type Classification Using a Semisupervised Convolutional Neural Network"

使用半监督CNN做车型识别,趋势所致,对大量未标记的数据使用sparse laplacian filter learning(SLFL) 获得卷积的滤波器。分类阶段,使用softmax进行多任务学习,每个车型的模型参数使用latent task 重建,对六类车辆进行分类,总图片数9850张。cnn网络输入图像,输出每类车型的概率,网络包含两步,分别提取低层局部特征和高层全局特征,将低层和高层特征综合

2015-10-15 16:44:38 3470

原创 论文提要“Learning Deepface Representation”

提出来金字塔CNN(PCNN)做人脸识别,使用greedy-filter-and-down-sample算子,在多尺度上特征共享描述人脸,学习到的8维特征在LFW数据库测试达到97.3%的结果。传统的人脸识别步骤有预处理,低层编码,特征转换,高层特征表示。深度网络将这些步骤一体化,直接对图像像素进行分析,信号经历多层非线性变换,与人工设计的多步骤方法类似。人脸描述是从图像像素映射到数值向量 f:R

2015-10-08 17:06:23 818

空空如也

cv_family_z的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也
提示
确定要删除当前文章?
取消 删除