自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(24)
  • 论坛 (1)

原创 开源代码文献

持续跟新Tracking: Learning to Track: Online Multi-Object Tracking by Decision Making ICCV2015 使用 Markov Decision Processes 做跟踪,速度可能比较慢,效果应该还可以 https://github.com/yuxng/MDP_Tracking Car detection: Int

2015-11-18 08:42:39 22524 2

原创 Deeply Learned Attributes for Crowded Scene Understanding

CVPR2015 http://www.ee.cuhk.edu.hk/~jshao/WWWCrowdDataset.html 代码 https://github.com/amandajshao/www_deep_crowd本文主要使用 CNN来解析拥挤场景首先建立了一个关于拥挤场景的数据库 WWW Crowd Dataset A quick glance of WWW Crowd Datas

2015-11-27 15:49:43 899

原创 Deep Learning Face Attributes in the Wild

ICCV 2015 香港中文大学人脸方面的研究 http://personal.ie.cuhk.edu.hk/~lz013/projects/FaceAttributes.html本文使用三个 CNN网络,前两个用于人脸检测,一个用于属性预测。 整个网络框架如下:三个网络如上图 (a),(b),(c)所示,(a)图输入整个图像,输出人脸和上半身图像,(b)输入人脸和上半身图像,输出人脸,(

2015-11-27 10:32:58 3158 1

原创 Face Alignment by Coarse-to-Fine Shape Searching

CVPR 2015 http://mmlab.ie.cuhk.edu.hk/projects/CFSS.html本文主要解决的是人脸配准问题,以前的方法 cascaded regression 主要问题在于人脸形状初始化问题。因为初始化可能不好,导致人脸形状优化陷入局部解。本文使用 coarse-to-fine framework 来解决初始化问题,同时对较大的人脸姿态也能很好的解决。整个框架如

2015-11-26 16:03:34 2119

原创 人脸检测“A Fast and Accurate Unconstrained Face Detector”

NPD人脸检测主要内容: 1.图像特征:Normalized Pixel Difference(NPD),存在查找表中。 2.特征筛选:deep quadratic tree 3.分类:soft cascade classifier1.NPD特征 就是两个像素的相对差值,根据Weber规则得到。 f(x,y)=x−yx+yf(x,y)=\frac {x-y}{x+y} 对于s*s的图像,

2015-11-25 15:02:59 7209 21

原创 Scale-aware Fast R-CNN for Pedestrian Detection

本文主要关注行人检测中的尺度问题。在图像中,离相机近的人尺寸大些,离相机远的人在图像中尺度小些。如下图所示:不同尺寸的人提取出的特征也不一样。以前大多数文献针对该问题只用一个模型来解决。本文提出了一个新的解决方案: 训练两个网络,一个对应大的尺寸,一个对应小的尺寸。 实验数据: 时间

2015-11-25 14:50:20 5749 3

原创 Real-Time Pedestrian Detection With Deep Network Cascades

BMVC 2015 实时行人检测 Cascades + CNN本文主要是参考文献【4】中采用 soft-cascade ,并结合不同复杂度的CNN网络得到即快又准的行人检测系统。在 Cascades 前面我们使用下面的小网络: 在 Cascades 后面我们使用下面的大网络: we employ the soft-cascade from Benenson et al. [4]

2015-11-25 11:12:04 2404 2

原创 Deep Learning Strong Parts for Pedestrian Detection

ICCV 2015本文主要利用深度学习结合 part model 得到一个 DeepParts 来解决 行人检测 中的 遮挡问题。DeepParts has four main contributions: 1)通过数据驱动,自动选择若干互补的局部模型 2) we are the first to extensively explore how single part detector and

2015-11-24 10:43:35 3079 2

原创 3D Object Proposals for Accurate Object Class Detection

ICCV 2015 3D物体候选区域提取,自动驾驶中的物体检测的前一个步骤Our code and data are online: http://www.cs.toronto.edu/ ˜ 3dop 暂时还不能访问3 3D Object Proposals 我们的输入是 a stereo image pair,使用 Yamaguchi et al. [31] 计算深度信息。 W

2015-11-23 16:47:05 2884

原创 Learning Complexity-Aware Cascades for Deep Pedestrian Detection

ICCV 2015本文主要介绍了一种考虑计算复杂度的级联器用于检测行人,将CNN特征嵌入级联器中。3 Complexity-Aware Cascade Training 3.1. AdaBoost AdaBoost 由若干若分类器组成一个强分类器。3.2. Complexity-Aware Learning 将误差函数定义为两部分,classification accur

2015-11-23 15:12:40 1868

原创 行人属性“Attributed Grammars for Joint Estimation of Human Attributes, Part and Pose”

相关工作 1.属性模型: 人脸:性别,发型,是否戴眼镜 Poselet:检测身体parts Panda: HOG based Poselet 检测parts,CNN分类。重在数据和微调。本文重在建模和表示。2.Part定位模型: pictorial structural model,geometry based tree model,DPM,POselet,CNN。3.Grammar模型:

2015-11-20 16:54:39 4316 3

原创 Person re-identification by Local Maximal Occurrence representation and metric learning

这是中科院关于Person re-identification CVPR 2015Local Maximal Occurrence Feature 3.1. Dealing with Illumination Variations 首先对图像使用 Retinex 进行了预处理,前后结果如下图所示: 对处理后的图像,我们通过计算 HSV color histogram 来提取颜色特

2015-11-20 09:18:24 3534 1

原创 Person Re-Identification by Iterative Re-Weighted Sparse Ranking

PAMI 2015 Source code available at: http://www.micc.unifi.it/lisanti/source-code/re-id/本文提出了一种简单有效的行人检索。基于 sparse basis expansions,做了一定改进,使得可以对搜索到的图像进行排序。提出的特征也比较简单有效,对于光照和姿态变化的影响不大。测试结果比较好。3 Weighted

2015-11-19 11:24:34 1673 2

翻译 车辆检测“Integrating Context and Occlusion for Car Detection by Hierarchical And-Or Model”

sczhu课题组的文章: http://www.stat.ucla.edu/~boli/projects/context_occlusion/context_occlusion.html主要思路 And-Or模型结合上下文及遮挡信息用于车辆检测,And-Or模型在三个层次上描述car-to-car上下文及遮挡信息,(1)N个car之间的空间布局,(2)单个car不同的遮挡结构,(3)part。

2015-11-18 16:40:12 2191 2

原创 Multi-Task Learning with Low Rank Attribute Embedding for Person Re-identification

ICCV 2015http://www.umiacs.umd.edu/~fyang/mtl-lorae.htmlPerson Re-identification 方面的文献,本文主要引入了 person attributes correlation 即人的一些属性具有相关性,利用这些相关性来进行人的检索。Our contributions: 1)针对 Person Re-identificatio

2015-11-18 13:47:02 1866 1

翻译 Data-Driven 3D Voxel Patterns for Object Category Recognition

CVPR2015 http://cvgl.stanford.edu/projects/3DVP/本文主要使用三维像素特征来检测图像中的车辆,三维模型检测车辆的优势是可以获得额外的信息:高度、遮挡、3D姿态等。首先来看看我们的3D Voxel Patterns 是什么?本文算法流程如下: 训练阶段:首先将3D CAD模型与图像对齐,提取得到 3D voxel exemplars, 然后得到 3D

2015-11-17 14:59:17 1968

原创 人脸识别“DeepID”

DeepID的网络结构如下,网络最后一层获取的特征维数是160,用于分类超过10000类人脸身份,串联从不同人脸patch获取的DeepID特征,特征可以使用Joint Bayesian分类: Deep ConvNets 网络结构如下,DeepID最后一层与第三第四卷积层全连接,以减少第四层可能存在的信息损失。 网络的输出是softmax预测n个身份的概率: 特征提取之前进行人脸矫正,使用五

2015-11-17 14:53:49 1395

原创 行人检索 Partial Person Re-identification ICCV2015

行人检索问题是一个很难得问题,而局部行人检索问题则更加的困难。目前大部分文献都关注整体行人检索,没有考虑遮挡问题。局部行人检索问题如下图所示: 下图所示为我们实际中的检索图像,以及我们手工框出来的输入图像,及对应的库中的图像。 针对局部行人检索问题,我们提出以下框架来解决: 首先是局部对局部进行匹配,然后再进行整体对局部进行匹配。3.1. Local-to-Local Matching

2015-11-17 10:48:21 3583

原创 论文提要 Deep Face Recognition

本文是关于深度人脸识别,British Machine Vision Conference, 2015 Visual Geometry Group Department of Engineering Science University of Oxford VGG网络提出的那帮家伙开源代码 http://www.robots.ox.ac.uk/~vgg/software/vgg_face/本

2015-11-16 17:22:35 4378 3

原创 行人检索"Deep Ranking for Person Re-identification via Joint Representation Learning"

检索的原则:与被检索图像正确匹配的图像应在整个检索库中排名靠前。提出了一个排名模型,使用深度CNN构建输入图像对于相似度得分之间的关系。在训练阶段,将标记的数据放到ranking units中,每个包含一个probe和对应的检索集。深度网络学习这么一个关系:为正确的匹配分配最高的相似度得分。相关研究: A.行人检索 设计的特征:Ensemble of Localized Features (EL

2015-11-16 15:38:09 3138

原创 行人检索“An Improved Deep Learning Architecture for Person Re-Identification”

做行人检索的文章,输入是一对图像,网络输出这对图像的相似度值,新引入的网络层包括跨输入邻域差值层,根据图像对的卷积特征图计算局部关联,之后使用加和特征对输出特征图的邻域进行加和,最后计算远距离像素点的关联性。检索包括两部分,特征提取和特征相似度衡量。 传统的特征提取方法:颜色直方图,LBP,Gabor,local patch。 相似度度量:M氏距离,LFDA,MFA。网络架构:two layer

2015-11-13 13:52:57 5866 10

原创 3D ShapeNets

主页:http://vision.princeton.edu/projects/2014/3DShapeNets/提要:使用CAD数据作为训练数据,使用卷积DBN网络构建了一个3D ShapeNets,对Kinect传感器获取的2.5D深度图进行目标识别和复原全3D形状。3D shapeNets 将3D形状表示为3D voxel 网格二值变量的概率分布,作者构造了一个卷积DBN,学习输入x和lab

2015-11-12 12:39:48 5292 1

原创 行人检测“Joint Deep Learning for Pedestrian Detection”

动机:行人检测中的特征提取,形变处理,遮挡处理和分类联合学习。深度网络可以将各部分放到不同的网络层并使用BP进行优化。相关工作: 用于行人检测的特征:Haar,HOG,SIFT,一阶颜色特征如颜色直方图,二阶颜色特征如CSS,co-occurence特征,纹理特征LBP,其他形式的特征包括协方差,深度图,分割结果,3D几何,深度学习局部最大或平均池化特征。这些特征没有考虑行人的形变特征。 处理形

2015-11-06 14:24:04 2695

原创 DeepID-Net:multi-stage and deformable deep CNNs for object detection

论文贡献: 1.融合多种技术进行目标检测:feature representation learning, part deformation learning, sub-box feature extraction, context modeling, model averaging, and bounding box location refinement 2.预训练方法:使用1000类ob

2015-11-02 17:01:04 1679

空空如也

cv_family_z的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也
提示
确定要删除当前文章?
取消 删除