自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(20)
  • 论坛 (1)

原创 数据库

人脸数据库 关注博客:http://haoxiang.org/2013/12/face-recognition-detection-database/香港的CelebA: http://mmlab.ie.cuhk.edu.hk/projects/CelebA.htmlWIDERFACE: http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/

2015-12-29 16:40:23 1687

原创 人脸识别“FaceNet: A Unified Embedding for Face Recognition and Clustering”

作者认为用于训练的三元组很重要,使用经过筛选的三元组数据训练,在LFW上识别率达到了99.63%。使用深度卷积网学习图像的欧式嵌入。方法描述: 使用了两个网络Zeiler&Fergus,Inception网络。这个系统的架构如下: 将三元组损失用于识别,认证和聚类任务。学习一个embedding 函数f(x)f(x)将图像x映射到特征空间Rd\mathbb R^d,使得同一人脸间的平方距离最小。

2015-12-29 12:33:17 3467

原创 人脸检测“Joint Cascade Face Detection and Alignment”

开源代码:https://github.com/luoyetx/JDA 好的介绍博客:http://www.cvrobot.net/joint-cascade-face-detection-and-alignment/思路:将人脸矫正和检测一起做,矫正来提升检测准确率先验证矫正对检测有效,检测后分类器:对OpenCV Haar产生的3000个窗口处理,27facial points SIFT fe

2015-12-25 17:01:23 3082

原创 Striving for Simplicity: The All Convolutional Net

http://arxiv.org/abs/1412.6806CNN网络貌似由简单到复杂,再由复杂到简单的趋势当前主流的CNN网络一般都包括以下几个模块:convolution and max-pooling layers和交替,最后是少数全链接层。本文对此深入分析,提出了只有卷积层的网络,发现效果不错。首先来看看 pooling, why pooling can help in CNNs,可能的解释

2015-12-25 15:16:18 5624 1

原创 A Lightened CNN for Deep Face Representation

一个小巧的人脸识别CNN网络https://github.com/AlfredXiangWu/face_verification_experiment当前基于CNN网络的人脸识别的文献可以说是满天飞,虽然效果不错,但是计算量大是一个问题。导致其难以用于嵌入式设备或手机里。当前关于人脸识别的CNN网络问题如下:1)很深的CNN网络导致一个大的模型,提取特征的时间较长。2)基于 ReLU 激活函数学习到

2015-12-25 09:26:13 7878 4

原创 3D识别“3D Object Representations for Fine-Grained Categorization”

数据库:http://ai.stanford.edu/~jkrause/cars/car_dataset.html目标:用3D表示做车型精细识别,基于两种2D表示SPP,BubleBank。 构建了两个数据库:10-BMW,197-car,数据库在网站上下载。 3D几何估计 使用3D CAD模型进行建模,精细识别的第一步是找到一个最合适图像的CAD模型。 合成数据:使用CAD模型渲染出训练数

2015-12-24 16:49:30 2189

原创 Training Very Deep Networks--Highway Networks

网上有传言 微软的深度残差学习是抄袭 Highway Networks,只是Highway Networks的一个特例。Highway Networks 的确是先发表的。http://people.idsia.ch/~rupesh/very_deep_learning/有开源代码Our Highway Networks take inspiration from Long Short Term Me

2015-12-18 09:17:05 7080

原创 Deep Residual Learning for Image Recognition

这是微软方面的最新研究成果, 在第六届ImageNet年度图像识别测试中,微软研究院的计算机图像识别系统在几个类别的测试中获得第一名。本文是解决超深度CNN网络训练问题,152层及尝试了1000层。随着CNN网络的发展,尤其的VGG网络的提出,大家发现网络的层数是一个关键因素,貌似越深的网络效果越好。但是随着网络层数的增加,问题也随之而来。首先一个问题是 vanishing/exploding g

2015-12-16 15:13:37 13657 1

原创 BING++: A Fast High Quality Object Proposal Generator at 100fps

本文是对 BING 算法的升级,主要是在快的同时保持定位精度 两个 + 分别对应: edge-based recursive boxes as one “+”, and MTSE-based superpixel merging as the other “+”Object Detection Recall (DR):which is the ratio of the number of corr

2015-12-11 09:35:22 3335 4

原创 Actions and Attributes from Wholes and Parts

ICCV 2015 本文主要是用CNN网络进行人体部件检测,再用CNN进行人的属性及动作分类。 人的部件检测如下图所示:输入多尺度图像,提取第五卷积层特征,再用部件模型对特征层进行卷积,得到多尺度部件概率图。 对于人的属性及动作分类,首先将部件及整个人的图像输入CNN网络,然后提取CNN第七层特征,然后使用线性SVM分类器进行分类。 结果: 属性识别结果 动作识别结果:

2015-12-10 11:10:17 1538

原创 人脸检测“Face detections without bells and whistles”

使用了两种简单的方法:ICF和DPM做人脸检测。主要贡献: 1.在使用恰当的情况下,普通的DPM可以超越复杂DPM的结果; 2.使用ICF做人脸检测,几个固定的模板可以达到很好的效果;数据库: AFLW:26 000个标记人脸,AFW:205bbox,FDDB:2845 椭圆标记 评价标准:IOU>0.5,AP。ICF detectorbaseline 方法:SquaresChnFtrs-5

2015-12-09 14:59:09 2604

原创 Flowing ConvNets for Human Pose Estimation in Videos

ICCV 2015 code available http://www.robots.ox.ac.uk/~vgg/software/cnn_heatmap/本文主要用CNN网络来进行人体姿态估计,加入了temporal 信息以提高精度。 网络框架如下: 本文对于关节位置的估计提出了一个 heatmap概念,而不是一个坐标的回归。这样做可以提高关节定位的鲁棒性。Spatial fusion

2015-12-09 14:39:58 3260

原创 From Facial Parts Responses to Face Detection: A Deep Learning Approach

ICCV 2015 email to get code and modelhttp://personal.ie.cuhk.edu.hk/~ys014/projects/Faceness/Faceness.html本文主要是用CNN进行人脸局部属性检测,然后各个部件综合起来得到人脸检测结果。 本文主要包含三个步骤: 3.1. Partness Maps Extraction 人脸部

2015-12-09 10:58:01 2754 1

原创 Unsupervised Learning of Visual Representations using Videos

ICCV 2015 project page http://www.cs.cmu.edu/~xiaolonw/unsupervise.html code https://github.com/xiaolonw/caffe-video_triplet这篇文章最大的亮点是 CNN 的 Unsupervised Learning。以前的CNN网络参数学习需要海量标定的数据,例如 ImageNet,

2015-12-08 14:05:12 1421

原创 Fast detection of multiple objects in traffic scenes with a common detection framework

IEEE Transactions on Intelligent Transportation Systems. 2015本文使用一个通用框架来检测三个东西:车、交通信号标志、骑自行车的人。 aggregated channel features + Shrinkage version of AdaBoost 系统大的框架如下: A. Object Subcategorization 对

2015-12-04 14:44:35 1596

原创 DenseBox: Unifying Landmark Localization with End to End Object Detection

百度深度学习研究院 的目标检测工作 类似 Faster R-CNN输入多尺度图像,经过CNN处理,输出目标框Model Design 模型是从 19层的VGG模型演变来的。Multi-Level Feature Fusion: 将不同卷积层的特征联系起来可以提高检测效果Multi-Task Training: 两个任务:1)目标有无,2)目标的位置这里使用了 landmark 来改善定位模型

2015-12-04 11:34:35 8883

原创 Context-aware CNNs for person head detection

ICCV 2015 Matlab code available http://www.di.ens.fr/willow/research/headdetection/本文使用 CNN 进行 人头检测,包含三个子模型,结构示意图如下: Global model: 主要是给出一个多尺度热量图,越热的地方含有人头的概率越大。使用整幅图像的信息来定位物体,使用 CNN模型 Local model

2015-12-03 16:10:06 3808

原创 DeepBox: Learning Objectness with Convolutional Networks

ICCV 2015 code https://github.com/weichengkuo/DeepBoxproposal re-ranker ,本文是对候选区域重新排序。从 Edge box的2000个结果中选出500个好的候选区域,怎么选了? 使用一个小的 CNN网络3.1. Network Architecture our network architecture is: conv

2015-12-03 10:54:57 1729 2

原创 DeepCut: Joint Subset Partition and Labeling for Multi Person Pose Estimation

本文主要说的是多个人姿态估计问题先看看下面的结果图: 是怎么做到这个结果了? 首先使用 CNN提出人体部件的候选区域,每个候选区域作为一个节点,所有的节点组成一个图,节点之间的关联性作为图节点之间的权重,将其作为一个优化问题,将属于同一个人的部件(节点)归为一类,每个人作为一个单独类。本文的思路具有以下几个优势: 1)可以解决未知个数人的图像,通过归类得到有多少个人 2)通过图论节点的聚

2015-12-02 15:40:34 4292

原创 Oriented Object Proposals

ICCV 2015 关于候选区域提取的文献。 Oriented Object Proposals 简写 OOP算法 本文提出的提取算法的三个优势: 1)可以提取不同旋转角度的物体 2)本文的OOP算法得到更好的框,框的更准更小些 3)我们的候选区域个数更小些2 Related Work 以前候选区域提取算法主要可以分为两类: 1)Window scoring methods 滑

2015-12-01 09:42:49 2086 2

空空如也

cv_family_z的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也
提示
确定要删除当前文章?
取消 删除