自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 论坛 (1)

原创 人脸识别“Neural Aggregation Network for Video Face Recognition”

人脸识别的新方法,主要对视频进行处理,使用CNN提取视频中多帧人像的特征,之后使用聚合模块对所有帧的特征向量进行学习累积,实验结果表明这种方法比手工设计的方法如平均池化要好。人脸识别结构如下图所示:视频中的人脸包含了目标不同姿态及光照条件下的图像,视频人脸识别的关键是如何有效的如何不同帧中的人脸信息,保留有效的信息并去除噪声。常用的方法有池化,即平均池化和最大化池化,作者设计了一个自适应权值方法,使

2016-03-28 14:25:15 4061 2

原创 Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

神经网络每层的输入分布随着上一层参数的变化而变化,这样细致的初始化参数导致训练时间很长,这种现象为internal covariate shift,作者对训练的每个mini-batch进行Norm解决这个问题。Norm的引入可以用更高的学习率,初始参数不用精细微调,网络不再需要Dropout。使用mini-batch计算梯度损失能够提升训练的质量,更有效,使用SGD需要细心的调整网络的参数,包括学习

2016-03-15 17:04:36 1277

原创 Inception-v3:"Rethinking the Inception Architecture for Computer Vision"

Googlenet的延伸,通过对Inception module进行卷积分解展开网络,在ILSVRC 2012上,4个模型集成及多次裁切,top-1位为17.3%,top-5为3.5%。GoogleNet的优势:从参数数量来看,GoogleNet参数为500万个,AlexNet参数个数为GoogleNet的12倍,VGGNet参数又是AlexNet的3倍。因此在内存或计算资源受限时,GoogleNe

2016-03-03 16:50:50 11860

空空如也

cv_family_z的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也
提示
确定要删除当前文章?
取消 删除