自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(24)
  • 论坛 (1)

转载 物体跟踪-CVPR16-tracking[上]

http://blog.csdn.net/ben_ben_niao/article/details/52072659做了一段时间的跟踪,最近CVPR大会也过了一段时间了,这次将CVPR2016跟踪的文章做一次总结,主要是对paper的方法,创新,改进等方面进行介绍和总结。具体的实现细节不进行总结,今年来涌现了很多做跟踪的文章,但是目前多少的方法很难达到一个预期的效果。目前的跟踪主要有主

2016-08-31 16:19:35 2800 3

原创 目标跟踪“Staple: Complementary Learners for Real-Time Tracking”

综合了局部特征HOG和全局特征颜色直方图用于目标跟踪,速度达到80fps。相关工作 Correlation Filters作为衡量信号相似度的方法被用于跟踪,主要用于rigid模板,关于CF的介绍可见: http://www.cnblogs.com/hanhuili/p/4266990.htmlCF从圆形位移中学习,而颜色直方图对圆形位移不变,要解决变形问题,就要学习可变模板。方法描述 使用t

2016-08-31 16:07:23 10234 2

原创 Efficient Coarse-to-Fine PatchMatch for Large Displacement Optical Flow

CVPR 2016 本文提出了一个快速计算大位移光流的算法。 一般的算法在 tiny structures with large motions 情况下容易出现误差。算法采用多尺度框架,不同尺度可以提取出不同的信息。 两幅图像 I1,I2,从I1里提取一系列种子点。网格提取,每个d*d区域只有一个种子点。 然后从顶层开始,建立种子点的对应关系。然后根据上层的对应关系计算下一层的对应关系。

2016-08-30 14:48:50 2339 1

原创 人脸识别 - Sparsifying Neural Network Connections for Face Recognition

CVPR2016 香港中文大学人脸识别研究Sparsifying Neural Network Connections for Face Recognition本文主要思路是先训练一个 Baseline ConvNet structures,VGG模型的。然后对这个结果进行逐层 sparse,从全连接层到卷积层。每 sparse 一层,就训练一下。最后得到一个 sparse CNN 模型。Insp

2016-08-26 15:06:36 2392

原创 人脸识别 -Do We Really Need to Collect Millions of Faces for Effective Face Recognition?

ECCV 2016Do We Really Need to Collect Millions of Faces for Effective Face Recognition?http://www.openu.ac.il/home/hassner/projects/augmented_faces/Code, trained CNN models and data is coming!本文针对人脸训练

2016-08-25 15:47:19 2555 1

原创 人脸识别 - Pose-Aware Face Recognition in the Wild

CVPR 2016 本文作者提供了 训练好的 CNN模型本文主要侧重解决人脸识别中的姿态问题。由 图1 可以看出,LFW数据中人脸的角度集中在 正负20度,而 IJB-A数据库中的角度分部则比较宽。这种大角度人脸识别难度比较大。本文首先对人脸的角度进行分类,然后再用对应角度的CNN网络 进行人脸识别。针对人脸,我们采用了 multi-alignment策略: 2D in-plane align

2016-08-25 09:33:31 3587 2

原创 目标跟踪“Siamese Instance Search for Tracking”

使用siamese深度网络,no model updating, no occlusion detection, no combination of trackers, no geometric matching,达到state-of-the-art的水平。论文旨在学习匹配机制,从大量的外部视频学习先验的匹配函数,训练视频与测试视频没有交集,在学习过程中关注广义目标外形变化。在跟踪过程中目标不变,不

2016-08-24 16:06:11 4514 3

原创 CNN网络量化 - Quantized Convolutional Neural Networks for Mobile Devices

Quantized Convolutional Neural Networks for Mobile DevicesCVPR2016GitHub code: https://github.com/jiaxiang-wu/quantized-cnn本文主要是通过对CNN网络的量化,达到压缩模型大小及加快速度的目的,牺牲的准确率比较小。CNN网络在 test phase , 运算时间主要消耗在卷积层,C

2016-08-24 14:35:27 9228 4

原创 行人检索 Learning a Discriminative Null Space for Person Re-identification

CVPR 2016 code: http://www.eecs.qmul.ac.uk/~lz/当前行人检索问题主要关注于 learning the optimal distance metrics,减少同类距离,扩大异类距离。一般来说一个行人的外表用几千维向量来表示其特征,同一个人一般只有几百个样本(主要是以为收集样本比较困难),所以存在 the classic small sample si

2016-08-23 09:55:05 2550 2

原创 行人检测-Pedestrian Detection Inspired by Appearance Constancy and Shape Symmetry

CVPR 2016 关于行人检测的文献 手工设计特征,然后训练分类器进行行人检测。3 Our methods 3.1. Appearance constancy and shape symmetry这里提出了两个关于行人的特点 Appearance constancy 在水平方向,人体内的纹理基本相似,与背景有一定差异。 shape symmetry 人体在水平方向具有一定的对称性

2016-08-19 14:14:51 1997

原创 简笔画检索“Sketch Me That Shoe”

http://www.eecs.qmul.ac.uk/~qian/Project_cvpr16.html问题提出及应用 根据绘制的简笔画进行图像检索,存在几个挑战: 1.跨域精细比对 2.简笔画高度抽象 3.数据少简笔画存在一定的应用空间,比如下图搜索商品,还有人脸简笔画库CUKH Face Sketches。 网络结构 论文使用的基准网络结构是sketch-a-net,对其进行了两个改

2016-08-19 11:01:25 3258 3

原创 BoxCars: 3D Boxes as CNN Input for Improved Fine-Grained Vehicle Recognition

CVPR 2016 本文没有开源代码相关文档和代码 https://medusa.fit.vutbr.cz/traffic/research-topics/fine-grained-vehicle-recognition/unsupervised-processing-of-vehicle-appearance-for-automatic-understanding-in-traffic

2016-08-17 15:38:08 3157

原创 Canny Text Detector: Fast and Robust Scene Text Localization Algorithm

CVPR 2016本文主要是解决图像中的文字定位问题的。将每个文字看做 Canny 算法中的边缘像素,用 Canny 边缘提取的思路来检测文字。先上图看一下我们算法和其他算法的对比:算法的流程如下:1)使用一个 MSER变体算法提取字符候选区域。 2)每个候选字符使用 AdaBoost classifier 评估一下,这里使用了双阈值, 得到强候选字符和弱候选字符 3)根据字符规则出

2016-08-17 09:20:57 3169 1

原创 How Far are We from Solving Pedestrian Detection?

CVPR 2016 我们离解决行人检测问题到底还有多远?How Far are We from Solving Pedestrian Detection? 项目网页:https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/people-detection-pose-estim

2016-08-04 15:25:35 2598

原创 Fast Detection of Curved Edges at Low SNR

CVPR 2016 低信号噪声比图像中曲线边缘快速检测http://www.wisdom.weizmann.ac.il/~yehonato/projectPage.html有源代码本文针对低信号噪声比图像 曲线边缘检测主要思路如下: 1)An efficient hierarchical algorithm to examine an exponential number of candid

2016-08-04 11:09:24 1952 3

原创 Object Contour Detection with a Fully Convolutional Encoder-Decoder Network

CVPR 2016 使用 CNN 网络进行 物体轮廓提取Object Contour Detection with a Fully Convolutional Encoder-Decoder Network我们将轮廓检测问题看做一个图像二值标记问题。 We formulate contour detection as a binary image labeling problem where

2016-08-04 10:46:31 3642

原创 Beyond Local Search: Tracking Objects Everywhere with Instance-Specific Proposals

CVPR 2016Beyond Local Search: Tracking Objects Everywhere with Instance-Specific Proposals本文主要解决快速运动物体的跟踪问题,以前大部分跟踪的方法都会在通过一个运动模型预测下一帧物体可能的位置,在其局部区域进行搜索匹配。该方法有两个个前提就是:1)物体被正确跟踪,2)运动不是太快。有时物体变形也会对其产生影响

2016-08-04 09:26:45 2209 5

原创 From Keyframes to Key Objects: Video Summarization by Representative Object Proposal Selection

CVPR2016From Keyframes to Key Objects: Video Summarization by Representative Object Proposal Selection本文主要针对视频摘要,从关键帧中提取出关键物体。本文主要思路如下:针对每个关键帧,使用 Edge Boxes 提取 物体候选区域,然后将所有的候选区域集中在一起,提取特征,使用优化方法,找出代表性

2016-08-03 16:01:17 1323

原创 A Deeper Look at Saliency: Feature Contrast, Semantics, and Beyond

CVPR2016 A Deeper Look at Saliency: Feature Contrast, Semantics, and Beyond本文首先解决的问题是在设计 visual saliency 模型时,关注的是 high level considerations,然后就是提出了一个 基于 全卷积网络的 FCNs 深度模型,同时指出在训练数据的选择,真值数据的使用上对最终结果至关

2016-08-03 14:27:27 1128

原创 ubuntu+cuda安装问题总结

1.安装ssh服务器 1)更新资源列表 打开”终端窗口”,输入”sudo apt-get update”–>回车–>”输入当前登录用户的管理员密码”–>回车 2)安装ssh服务器 打开”终端窗口”,输入”sudo apt-get install openssh-server”–>回车–>输入”y”–>回车–>安装完成2.安装cuda添加环境变量 在/etc/profile文件中配置 打开

2016-08-03 11:30:04 22431

原创 The Global Patch Collider

CVPR2016 The Global Patch Collider本文提出了一个快速的算法,用于建立图像对中的全局对应关系。 global point-wise correspondences in images and videos。这里主要使用多个学习到的树结构来进行搜索匹配的。每个图像块会遍历决策森林中的每个树,到达树的不同叶子节点。如果从源图像和目标图像中的图像块在所有的树中都位于同

2016-08-03 09:33:39 1727

原创 Shallow and Deep Convolutional Networks for Saliency Prediction

CVPR 2016 Shallow and Deep Convolutional Networks for Saliency Prediction CNN网络 用于 显著性预测开源代码 : https://github.com/imatge-upc/saliency-2016-cvpr本文针对显著性预测问题,提出了两个CNN网络,一个小的模型,一个较深的模型。视觉显著性指智能算法通过模拟人的

2016-08-02 15:33:04 1921 1

原创 CoMaL: Good Features to Match on Object Boundaries

CVPR 2016 用于匹配的边界位置角点特征提取CoMaL: Good Features to Match on Object Boundaries本文主要在物体边缘位置找出适合于匹配跟踪的好的特征。传统的特征方法在物体边缘位置效果不好,主要是因为背景在变化。如下图所示:本文针对物体边缘位置,利用 Maximally Stable Extremal Regions(MSER) 提出了 Ma

2016-08-02 11:10:42 956

原创 Anticipating Visual Representations from Unlabeled Video

CVPR 2016 Anticipating Visual Representations from Unlabeled Videohttp://www.guokr.com/article/441589/预测未来? 本文使用CNN网络,通过学习大量未标记视频数据,来预测未来发生的事情。虽然效果不完美,但是方向还是很吸引人的,相信不远的将来该方向会有更大的进步。本文的网络结构如下: 因为未来具有多

2016-08-01 16:35:40 1094

空空如也

cv_family_z的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也
提示
确定要删除当前文章?
取消 删除