自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 论坛 (1)

原创 物体跟踪-Fully-Convolutional Siamese Networks for Object Tracking

项目网页 http://www.robots.ox.ac.uk/~luca/siamese-fc.html 开源代码: https://github.com/bertinetto/siamese-fc本文将一个全卷积 Siamese 网络嵌入到一个简单的跟踪算法中,使其跟踪效果很好,速度很快。该 Siamese 网络使用的训练数据是 ILSVRC15 数据库中用于目标检测的视频。针对任意目标跟踪问

2016-09-20 15:15:17 7114 5

原创 Learning Compact Binary Descriptors with Unsupervised Deep Neural Networks

CVPR2016 开源代码: https://github.com/kevinlin311tw/cvpr16-deepbit本文通过深度学习网络来学习 Compact Binary Descriptors , 亮点是 Unsupervised,在优化函数里面加入了三个约束: 1) minimal loss quantization 2) evenly distributed codes

2016-09-19 14:53:03 1791 1

原创 图像检索--Deep Supervised Hashing for Fast Image Retrieval

CVPR2016 Deep Supervised Hashing for Fast Image Retrieval源代码: http://vipl.ict.ac.cn/resources/codes 网页打不开啊本文使用CNN网络来完成快速图像检索。 image feature extraction and binary code learning本文的网络结构如下:三个卷积层,两个全连接层,对

2016-09-08 14:30:38 7807

原创 CNN网络分解--Factorized Convolutional Neural Networks

ICML2016本文主要针对CNN网络的卷积运算进行深入分析,简化卷积运算。 Our model achieves accuracy of GoogLeNet while consuming 3.4 times less computation 本文和以前CNN网络简化工作最大的不同在于,以前都需要预训练完整的模型,在这个基础上简化完整模型,然后再微调简化后的模型。This limitation

2016-09-07 10:50:27 3778

原创 目标检测--PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection

https://www.arxiv.org/abs/1608.08021本文针对多种类目标检测这个问题,结合当前各种最新技术成果,达到很好的结果。针对整体检测框架:CNN feature extraction + region proposal + RoI classification 我们主要优化 feature extraction,因为 region proposal part 速度比较快

2016-09-05 10:53:42 9302 1

原创 激活函数-Concatenated Rectified Linear Units

ICML2016Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units本文在深入分析CNN网络内部结构,发现在CNN网络的前几层学习到的滤波器中存在负相关。 they appear surprisingly opposite to each other,

2016-09-01 15:09:54 5324

原创 行人检测 Is Faster R-CNN Doing Well for Pedestrian Detection?

ECCV 2016本文主要是分析了一下Faster R-CNN用于行人检测效果不好的原因,并对比提出了解决方案。 Faster R-CNN用于行人检测效果不好的原因有两个: 1)行人在图像中的尺寸较小,(e.g., 28×70 for Caltech),对于小物体, Region-of-Interest (RoI) pooling layer 在 low-resolution feature

2016-09-01 10:44:19 8866 4

空空如也

cv_family_z的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也
提示
确定要删除当前文章?
取消 删除