自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 论坛 (1)

原创 图像分割“Fully Convolutional Instance-aware Semantic Segmentation”

相关方法 FCN用于语义分割的流程,输入任意尺寸的图像,经过一系列的卷积层,输出每个像素所有语义类别的似然得分,如下图所示: 但FCN不是instance-aware的,instance-aware需要检测和分割目标。卷积是平移不变的,同一个像素的响应相同,与上下文位置无关。instance-aware的语义分割是在区域级上操作的,统一像素在不同的区域有不同的语义,如图2所示: 主流的inst

2017-05-24 11:42:11 2691 2

原创 图像分割 DeepLab v2

标题:DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs 网站: http://liangchiehchen.com/projects/DeepLab.html.深度卷积网络用于语义分割的三个挑战:特征分辨率下降 主要由于重

2017-05-23 15:56:17 10042

原创 图像分割“Not All Pixels Are Equal: Difficulty-Aware Semantic Segmentation via Deep Layer Cascade”

提出层级联(LC)提升语义分割的准确率和速度,将深度模型改为几个子模型的级联,初级子模型处理容易或置信度较高的区域,之后将较难的区域前向传播到下一级自模型处理。卷积仅在特定区域上计算,降低了计算量。优点: 1. 浅层处理较易区域,深层处理较难区域,自适应学习提升性能; 2. LC的训练和测试时间都有提升; 3. 端到端的训练结构,所有子模型联合训练。与V&J级联思路不同,层级联拒绝置信度较

2017-05-22 11:40:24 1856

原创 PVANET 之再阅读

旨在降低计算量,重新设计了特征提取部分,设计原则是“通道少层数多”,网络比较深但是比较瘦,使用了batch norm,residual 连接,学习率更新策略等技术。在VOC2012上 rank-2,运行时间在i7-6700K CPU上750ms/帧,在Titan X GPU上运行时间45ms/帧。其他增强性能方法:在CNN的前几层使用C.ReLU,降低一半计算量 CNN前几层,输出节点激活一般有

2017-05-19 16:01:21 4939

空空如也

cv_family_z的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也
提示
确定要删除当前文章?
取消 删除