自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 论坛 (1)

原创 图像分割"LIP: Self-supervised Structure-sensitive Learning and A New Benchmark for Human Parsing"

数据集:http://hcp.sysu.edu.cn/lip code: https://github.com/Engineering-Course/LIP_SSL. 做人体部件分割,构建了一个新的数据库“LIP”,包含19个语义标记。在训练中融入结构信息,提升分割效果。 人体分割具体应用:行人再认证,行为分析等。 目前三个人体部件数据库ATR,Pascal-Person-Part和LIP复

2017-07-28 14:59:43 3295

原创 图像分割“LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation”

LinkNet主要特点是速度快,在嵌入式系统TX1和TitanX上运行速度都比较块。 LinkNet网络结构如图1所示: conv代表卷积,full-conv代表全卷积,卷积层之前加BN,后加ReLU,左半部分表示编码,右半部份标识解码,编码块包含残差块,LinkNet使用ResNet-18作为编码器,如下图所示: 解码块的细节如下图所示: LinkNet的创新点是将每个编码器与解码器相连接

2017-07-25 11:15:09 4285

原创 图像分割“RefineNet-Multi-Path Refinement Networks for High-Resolution Semantic Segmentation”

CNN用于语义分割,主要问题是重复的下采样操作带来的分辨率的下降。RefineNet提出了一个多路径的改进网络,提取下采样过程中所有信息,使用长距离残差连接获得高分辨率的预测。用精细层的特征 ,高层的语义信息可以得到改善。另外,论文使用了链式残差池化,可以获取丰富的背景知识。高层语义特征对获取图像区域的类别标识有帮助,而低层特征对获取边缘、突变有帮助,如何获取中间层的特征还是个开放性问题。论文设计

2017-07-24 16:34:38 2530

空空如也

cv_family_z的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也
提示
确定要删除当前文章?
取消 删除