自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 论坛 (1)

原创 图像分割“The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation”

code:: https://github.com/SimJeg/FC-DenseNet DSOD中的一篇参考文献,不需要预训练进行图像分割,同样使用了DenseNet。在CamVid和Gatech数据库上,没有预训练,没有CRF后处理,达到了state-of-the-art的效果。DenseNet的优点:(1)参数有效性,参数使用效率高;(2)隐式深层监督,short paths;(3)特征重用

2017-08-23 15:24:54 5857

原创 物体检测“DSOD: Learning Deeply Supervised Object Detectors from Scratch”

code: https://github.com/szq0214/DSOD 亮点是不需要使用ImageNet预训练,设计了一些训练的准则,一个是深度监督(deep supervision),由DenseNet得到致密的层级连接想法,基于不需要proposal的考虑,选取SSD作为改进的基本版本。DSOD 1. DSOD框架 与SSD类似,是一个多尺度不需要proposal的检测框架。网络有两个

2017-08-22 16:18:12 2841

原创 图像分割“Understanding Convolution for Semantic Segmentation”

预训练的模型:https://goo.gl/DQMeun在图像分割编码网络和解码网络,分别使用了两种方法改进,提升分割效果。在解码阶段,使用致密的上采样卷积(DUC)生成像素级预测,DUC可以捕获双线性插值上采用损失的信息。在编码阶段,使用混合膨胀卷积(HDC)代替标准的膨胀卷积,解决“gridding”问题。致密的上采样卷积 目的是生成与输入图像大小相同的分割标记图,论文设计的带有DUC层的R

2017-08-21 16:39:00 1445

原创 目标检测“Perceptual Generative Adversarial Networks for Small Object Detection”

解决小目标检测问题的一般方法:提高输入图像的分辨率,会增加运算量;多尺度特征表示,结果不可控。 方法提出 论文使用感知生成式对抗网络(Perceptual GAN)提高小物体检测率,generator将小物体的poor表示转换成super-resolved的表示,discriminator与generator以竞争的方式分辨特征。Perceptual GAN挖掘不同尺度物体间的结构关联,提高小物

2017-08-17 15:20:38 8925 19

原创 图像分割“Efficient Deep Models for Monocular Road Segmentation”

快速图像分割,在KITTI数据库上做路面的分割,原始分辨率分割可以达到50ms。主要的改动是反卷积层中参数分布的改动。路面分割是个二分类问题:路面和非路面。使用模型f(x,γ)f(x,\gamma)表示网络结构,γ\gamma是网络参数,通过最小化误差得到: 网络结构 FCN一般有一个浓缩部分,还有一个对应的反卷积部分。论文提出的改进模型如下图所示: 浓缩网络层使用VGG分类网络初始化,每个膨

2017-08-14 15:29:36 775

原创 车辆检测“Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis from monoc”

Deep Many Task,同时进行车辆检测,部件定位,可视化特征描述及3D维度估计。基于coarse-to-fine的目标proposal结构提升检测性能。Deep MANTA可以定位不可见的车辆部位。应用 3D车辆定位和方向估计可用于估计车辆速度和方向。论文第一个贡献是使用车辆特征点编码3D车辆信息,车辆是刚性的,可通过回归的方法预测隐藏的部分。结合3D数据集,将3D点投影到2D图像中的车辆

2017-08-01 11:41:00 2331 1

空空如也

cv_family_z的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也
提示
确定要删除当前文章?
取消 删除