自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(15)
  • 论坛 (1)

原创 多任务学习“Exploiting Multi-Grain Ranking Constraints for Precisely Searching Visually-similar Vehicles”

multi-grain ranking约束用于车辆精确检索。其中一个是Generalized Pairwise Ranking(GPR),将二值的相似/不相似关系泛化到广义的多层关系,(0/1)到(0/1/2/3…n)。另外一个是Multi-Grain based List Ranking(MGLR),使用一组具有多层关系的图像训练,ranking对应多次关系,使用组合概率对multi-grain

2017-10-27 17:02:19 881

原创 多任务学习“Facial Landmark Detection by Deep Multi-task Learning”

使用多任务学习提升人脸特征点检测的准确率,相关的任务如人头姿态估计、人脸属性预测(性别、年龄、人脸表情)。考虑到不同任务的收敛速度不一样,有些任务可以提前停止优化。人类特征点检测的估计受其他任务或相关因素的影响。如人笑的时候嘴是大张的,头部偏转角度大时,瞳孔距离变小,挖掘这些人脸属性相关的信息可以帮助检特征点。示例 如图1所示: 不同的任务学习的难度比较大,如分辨“戴眼镜”就比分辨是否“笑”要简单

2017-10-26 11:40:46 1050

原创 多任务学习“Embedding Label Structures for Fine-Grained Feature Representation”

论文使用多任务学习框架进行精细的车辆分类,同时学习分类和相似度约束。车辆分类可以分为多层,如品牌、型号、年款,为了对多层之间相关性进行建模,使用triplet loss,将标记的结构如hierarchy的或者shared attributes嵌入到框架中。为了获得精细粒度的特征表示,一些方法加入similarity 约束,如contrastive、tiplet损失。直接使用相似度约束在找相同的实例中

2017-10-25 15:20:54 1652 2

原创 行人属性“Weakly-supervised Learning of Mid-level Features for Pedestrian Attribute Recognition and Loca”

不同于多标签学习,这篇论文建立了一个弱监督属性定位框架。基于GoogleNet,设计新的检测层提取mid-level属性特征。不需要bbox属性标记,使用基于最大池化的弱监督目标检测技术训练mid-level层。然后,回归这些检测响应梯度,预测属性标签。最后,对检测层的融合激活图聚类,得到属性的位置和形状。融合的权值由属性及其对应的mid-level特征相关程度估计。在PETA和RAP数据集上实验。

2017-10-20 16:31:58 2824 2

原创 行人属性“Multi-attribute Learning for Pedestrian Attribute Recognition in Surveillance Scenarios”

行人属性预测中被多篇论文引用的论文。内容相对简单,两个网络结构,DeepSAR对每个属性独立预测,DeepMAR多属性联合预测。目前属性预测关注的两个场景:自然场景和监控场景。自然场景图像质量一般比较高,而监控场景图像一般比较模糊、分辨率低、光线变化比较大。属性间一般是相互关联的,如头发的长度可以帮助性别的识别。网络结构: 属性通常不具有同一分布,为解决样本不均问题,提出改进的损失函

2017-10-20 10:52:51 4117 7

原创 行人属性“Attribute Recognition by Joint Recurrent Learning of Context and Correlation”

应该是比较新的属性学习文章了,ICCV2017。在监控场景中进行行人属性的识别,主要遇到的挑战是图像质量差,外形变化及属性可能在不同的空间位置,标记的训练样本少。论文提出JRL模型挖掘属性上下文信息及属性间相互关系提升识别准确率。JRL在一张行人图像内学习属性相关性,具体的说是属性预测顺序的相互关联性。解决属性预测遇到挑战的方法,一是使用属性的相关性:如“女性”和“裙子”在一张行人图像中出现的可能性

2017-10-19 16:30:43 3456 7

原创 行人属性“Person Attribute Recognition with a Jointly-trained Holistic CNN Model”

不考虑人体姿态,part及上下文信息,仅使用图像作为输入,训练CNN进行所有属性的预测。另外,提出了N/A标记,即对目标的属性不确定。如下图的人向左走,就无法确定其右手是否带包。 人体属性一般是二值的语义,如( is male? wears a tshirt? carries a bag in the left hand?),或者多项输出(orientation - left, right, f

2017-10-18 15:41:13 1763

原创 行人属性“Generative Adversarial Models for People Attribute Recognition in Surveillance”

对于监控场景下的行人,图片一般不清晰或被其他行人物体遮挡,可以进行图像清晰化、去遮挡操作,提升属性识别准确率。相关工作 整个人体进行属性的识别:ACN,DeepMAR;part-based models,R*CNN;MLCNN。方法描述 1. 几种方法对比 baseline方法:基于ResNet的行人属性分类。 两个生成对抗模型:重建被遮挡的人体部位,提高图像分辨率。 2. 网络描述 属

2017-10-17 16:04:36 1202

原创 行人属性“Contextual Action Recognition with R*CNN”

静态图像的行人行为识别,论文挖掘行为行为的上下文信息构建识别系统。 源代码: https://github.com/gkioxari/RstarCNN在静态图像的行为识别中,人体的姿态,行人周围的物体,行人与物体的交互方式和场景都是重要的线索。论文使用RCNN,提取不止一个区域进行预测,即R*CNN。R*CNN有一个包含人体的首要区域,还有一个次要区域包含上下文线索。如何选择次要区域呢,由多实例学

2017-10-16 15:25:08 1459

原创 行人属性“Fully-adaptive Feature Sharing in Multi-Task Networks with Applications in Person Attribute Cl”

多任务深度学习网络,一般是先设计网络有一些共享层,然后有多个分支学习不同的任务。论文从一个较瘦的网络开始,逐渐加粗。任务间进行选择性共享,挖掘那些任务之间更相关。thin网络使用SOMP初始化。task-specific子网络或分支:浅层特征共享,深层特征task-specific,类似属性结构。计算量大,且受设计者主观认识影响。相关研究 多任务学习:一些方法认识到哪些任务之间可以共享。Hyper

2017-10-13 11:35:15 2014 1

原创 行人属性“Human Attribute Recognition by Deep Hierarchical Contexts”

还是使用poselet检测到的part与行人整体结合,提取深度特征进行行人属性识别。此外,使用human-centric和scene-centric的上下文信息提升性能。human-centric上下文使用cnn特征最近邻计算其他行人part的相似度,捕获行人相互关系。场景上下文信息,使用全局场景分类得分对human-centric的预测结果进行重新打分。思路来源:如下图所示,由于遮挡和低图像质量等

2017-10-13 10:49:02 3264 1

原创 行人属性“Actions and Attributes from Wholes and Parts”

使用部件进行行为和属性分类,首先使用深度版poselet部件检测器,检测人体part。在行为和属性识别任务重,训练了包含part的全局cnn,提升性能。作者通过实验研究了加入part进行属性预测是否确实有必要。论文提出方法的结构如下图所示,计算行人整体及各部件的cnn特征用于分类: 通过实验发现,加入part会带来性能提升,但随着网络加深,性能提升不大。相关工作 低层特征:DPMs用于目标检测和

2017-10-12 11:28:55 1047 1

原创 行人属性“Improving Facial Attribute Prediction using Semantic Segmentation”

论文使用语义分割的结果提升人脸属性预测的性能,主要思路来自许多人脸属性描述的是局部特性。通过语义分割挖掘局部线索,指导属性预测时关注该属性来自的区域。使用bbox描述不同区域的边界是常用的方法,但人脸的不同bbox无法准确描述,因此论文使用像素级的语义分割结果。属性预测一般方法,图像输入到cnn,得到特征图,聚合输入到分类器。但全局池化与空间无关,通过语义分割将图像分割为不同的区域,论文学习哪部分区

2017-10-11 17:21:48 729

原创 行人属性“HydraPlus-Net: Attentive Deep Features for Pedestrian Analysis”

来自SenseTime的论文,提出了一个基于注意力机制的深度网络HydraPlus-Net,将多层注意力机制图多向映射到不同的特征层。由HP-Net得到的注意力深度特征具有几个优点:(1)模型能够从浅层到语义层捕获注意力;(2)挖掘多尺度的注意力特征,充实最终的行人特征表示。代码: https://github.com/xh-liu/HydraPlus-Net行人重认证,行人属性分析,重点关注能够补

2017-10-10 11:38:05 4794 2

原创 车牌识别“Towards End-to-End Car License Plates Detection and Recognition with Deep Neural Networks”

车牌检测和识别,很久没关注了。作者提出了一个一体化的深度网络,同时进行车牌的检测和识别,在识别时不需要字符分割,而是使用带有CTC的RNN网络,具体的实现细节在论文的参考论文【14】中。模型首先使用卷积层应用到输入图像,之后提取车牌proposals,接下来使用RoI池化层和MLP进行车牌检测和bbox回归,同时使用带有CTC的RNN进行牌照识别,网络的结构如图1所示: 车牌检测网络: 车牌检测

2017-10-09 17:15:32 3632 18

空空如也

cv_family_z的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也
提示
确定要删除当前文章?
取消 删除