自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 论坛 (1)

原创 人脸识别“NormFace: L 2 Hypersphere Embedding for Face Verification”

源码地址: https://github.com/happynear/NormFace研究了特征归一化方法用于增强人脸验证性能,同时提出了两种适应于归一化特征训练的两种策略:基于优化余弦相似度改进的softmax损失,改进的度量学习方法。在人脸验证中,余弦距离或者L2归一化的欧式距离通常用来衡量特征间的相似度,余弦距离相当于归一化的两个向量的内积。但在CNN的训练中,内积运算通常不进行归一...

2018-10-31 10:41:09 480

原创 深度嵌入学习“Sampling Matters in Deep Embedding Learning”

知乎专栏:https://zhuanlan.zhihu.com/p/27748177在检索和验证任务中,经常使用contrastive 损失或 triplet损失作为损失函数,大多数论文也主要关注如何选取损失函数,这篇论文认为训练样本的选取也很重要。提出了distance weighed sampling,选取信息量更大更稳定的训练样本。此外,提出了margin based loss,效果更好...

2018-10-25 17:42:30 1942

原创 三元损失“In Defense of the Triplet Loss for Person Re-Identification”

更全面的阅读记录可以参考这篇博客:https://blog.csdn.net/xuluohongshang/article/details/78965580背景描述提出了一个三元损失的变形用于行人再认证。近期较为成功的行人再认证方法一般使用分类损失结合验证损失。先使用分类损失训练,然后使用网络的一部分进行特征提取,结合度量学习获得最终的特征描述。存在问题:分类损失在id数量增加是,需要...

2018-10-24 16:23:27 1350

原创 DeepID2 "Deep Learning Face Representation by Joint Identification-Verification"

降低类内方差,提升类间方差一直是人脸识别的热点。论文将人脸识别和验证损失同时监督网络的训练,在LFW上获得99.15%的验证准确率。人脸识别是对输入图像分类,验证是判断一对图像是否为同一个ID。分类信号具有丰富的ID相关信息,或者类间方差,但分类信号对于相同ID的约束较小,即不同的特征可能映射到相同的ID上。这时当特征推广到新任务或者新ID时表现就不好。因此,论文增加了人脸验证信号的监督,要求...

2018-10-23 11:12:55 210

空空如也

cv_family_z的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也
提示
确定要删除当前文章?
取消 删除