matlab 8 矩阵的介绍

1. 向量的运算法则:加法,数乘,点积,叉积(向量积)

        叉积:两向量a,b的叉积得到另一个向量c。其方向与ab垂直且满足右手系法则,模的大小为向量ab构成的平行四边形的面积。      \left | \vec{c}\right |=\left | \vec{a}\right |\left |{b}\right |sin\theta

                                                        \begin{vmatrix} \vec{i} &\vec{j} &\vec{k} \\ a_{x}& a_{y} & a_{z}\\ b_{x} & b_{y} & b_{z} \end{vmatrix}=\vec{a}\times \vec{b}=\vec{c}

2.  定比分点问题

3. 特殊矩阵:单位矩阵,对称矩阵,对角矩阵,0-1矩阵

4.旋转变换

坐标系旋转变换

               \left\{\begin{matrix} {x}' =&xcos\theta + ysin\theta \\ {y}' =&-xsin\theta +ycos\theta \end{matrix}\right.\Rightarrow \begin{bmatrix} {x}'\\ {y}' \end{bmatrix}=\begin{bmatrix} cos\theta &sin\theta \\ -sin\theta &coa\theta \end{bmatrix}\begin{bmatrix} x\\y \end{bmatrix}

坐标旋转转换(坐标系不变,旋转得到): 

\left\{\begin{matrix} {x}' =&xcos\theta - ysin\theta \\ {y}' =&xsin\theta +ycos\theta \end{matrix}\right.

三维坐标系旋转

  \left\{\begin{matrix} {x}'= &xcos\theta + ysin\theta \\ {y}'=& -xsin\theta +ycos\theta \\ {z}'= &z \end{matrix}\right.

s.t. 绕z轴右手螺旋逆时针旋转

5. 两平面的夹角计算:(取两平面法向量的夹角)

                                ​​ \prod _{1}:A1x+B1y+C1z+D1=0 \\\prod _{2}:A2x+B2y+C2z+D2=0\\ cos\theta =\frac{\left | A1A2+B1B2+C1C2 \right |}{\sqrt{A1^2+B^2+C1^2}\times \sqrt{A2^2+B2^2+C2^2}} 

6. 切平面与法向量:空间曲面方程F(x,y,z)=c 给定,在曲面上任意取一条通过M的曲线,其参数方程形式为x=x(t),y=y(t),z=z(t),且当t=t0时,取得M点。则有F(x,y,z)=c,两边同时对t求导有:

                                ​​​​{F_{x}}'\times x{(t)}'+{F_{y}}'\times y{(t)}'+{F_{z}}'\times z{(t)}'=0\\ ({F_{x}}',{F_{y}}',{F_{z}}')\cdot (x{(t)}',y{(t)}',z{(t)}')=0 

其中({F_{x}}',{F_{y}}',{F_{z}}')为法向量,(x{(t)}',y{(t)}',z{(t)}')为方向向量

M点的切平面方程为:{F_{x}}|_{M}(x-x_{0})+{F_{y}}|_{M}(y-y_{0})+{F_{z}}|_{M}(z-z_{0})=0

法线方程为:\frac{x-x_{0}}{​{F_{x}}'}=\frac{y-y_{0}}{​{F_{y}}'}=\frac{z-z_{0}}{​{F_{z}}'}

7. 矩阵的秩:U的主元个数,及对角线不为0的元素个数,记作r(A)。矩阵的秩也是等于独立方程的个数。

非齐次方程组有解:r(A)=r(A|b)

非齐次方程组有唯一解:r(A)=r(A|B)=n,其中n为未知数的个数

非齐次方程组:有无解,唯一解,无穷多个解

8. 行列式

9. 逆矩阵:高斯消元法(三角)

10. 特征值和特征向量:

Ax=\lambda x\\ (A-\lambda I)x=0

11.空间直线方程

空间直线的一般方程:        A1x+B1y+C1z+D1=0\\ A2x+B2y+C2z+D2=0

空间直线的对称式方程:\frac{x-x_{0}}{m}=\frac{y-y_{0}}{n}=\frac{z-z_{0}}{p}   

        s(m,n,p)为该直线的方向向量,该直线经过M(x0,y0,z0)

 空间直线的参数方程:

                \frac{x-x_{0}}{m}=\frac{y-y_{0}}{n}=\frac{z-z_{0}}{p}=t

                       \left\{\begin{matrix} x= & mt+x_{0}\\ y=& nt+y_{0}\\ z=& pt+z_{0} \end{matrix}\right.

12. 平面方程:已知M(x_{0},y_{0},z_{0})和平面法向量\vec{n}=(a,b,c),可得:

a(x-{x_{0}})+b(y-{y_{0}})+c(z-{z_{0}})=0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值