代理模型解释机器学习
可解释的机器学习是人工智能(AI)和机器学习的子学科,它试图总结机器学习系统如何做出决策。 总结机器学习系统如何做出决策可能有很多原因,例如查找数据驱动的见解,发现机器学习系统中的问题,促进法规遵从性以及使用户对(或操作员可以)不可避免的错误决策提出上诉。
[ 也在InfoWorld上:2020年的人工智能预测 ]
当然,这听起来不错,但是可解释的机器学习还不是一门完美的科学。 现实是要牢记两个主要问题,它们是可解释的机器学习:
- 一些“黑匣子”机器学习系统可能太复杂而无法准确总结。
- 即使对于被设计为可解释的机器学习系统,有时呈现摘要信息的方式对于商人来说仍然过于复杂。 (图1为数据科学家提供了机器学习说明的示例。)
对于问题1,我假设您要使用当今可用的多种“玻璃盒”准确且可解释的机器学习模型之一,例如开源框架h2o-3中的单调梯度增强机器,LightGBM和XGBoost。 1本文重点讨论问题2,并帮助您将可解释的机器学习结果清楚地传达给业务决策者。
本文分为两个主要部分。 第一部分介绍了机器学习系统和整个数据集的可解释的机器学习摘要(即“全局”解释)。 本文的第二部分讨论了有关数据集中特定人员的机器学习系统决策摘要(即“本地”说明)。 另外,我将使用关于预测信用卡付款的简单示例问题来提出具体示例。
一般总结
可变重要性图表和替代决策树是为一组由整个数据集表示的一组客户总结机器学习系统的两种好方法。 现在,因为我希望商务人士关心和理解我的结果,所以我将这两件事分别称为“主要驱动因素图”和“决策流程图”。
主要决策驱动力
通常,主驱动程序图表提供了直观的摘要并列出了哪些因素对机器学习系统的决策最重要。 这是开始就机器学习系统如何工作进行交流的高级摘要和不错的地方。
在示例问题中,考虑到前六个月的付款状态,付款金额和账单金额,我试图预测9月份的信用卡欠款。 图2告诉我的是,对于我构建的机器学习系统而言,对于我的数据集中的大多数客户而言,上个月的还款状态到目前为止是最重要的因素。 我还可以看到,7月和6月的还款状态是下一个最重要的因素。