微软机器翻译api
微软已经发布了针对.Net开发人员的ML.Net机器学习框架的0.6版本 。 此更新添加了一个新的且更有用的模型构建API集,可以使用更多现有模型来提供预测,并且总体上具有更好的性能。
原始的ML.Net API限制了您可以构建的管道类型,并且在标记和评分数据方面有些笨拙的限制。 新的API更灵活地允许训练和预测过程由可以以多种组合方式结合在一起的多个组件组成,而不需要单个线性管线。 目标是模拟用于驱动其他框架(如Apache Spark)的API的设计。
根据Microsoft的说法,新的ML.Net API使“与多个学习者和培训者共享给定转换的执行和转换后的数据,或者分解管道并添加多个学习者”这样的事情成为可能。
通过将旧的ML.Net API移入旧名称空间中,将逐步淘汰旧的ML.Net API,以便现有软件可以暂时继续使用它。
新的ML.Net API还使用了强大的C#类型,因此在设计管道时所犯的任何错误都会在流程的早期显示出来,并且可以消除。
ML.Net的早期版本允许重用TensorFlow模型 。 新的ML.Net API通过允许加载现有的TensorFlow模型并将其用于预测而对此进行了扩展,而无需编写与之相关的训练过程。 通常,TensorFlow评分也更快,有些预测会加快多个数量级。
ML.Net 0.6还引入了使用以开放ONNX格式创建的模型对预测进行评分的功能。 ONNX模型可以由TensorFlow和Scikit-learn等其他框架导出和重新使用。 ML.Net长期以来一直能够将模型导出为ONNX。 现在,它可以采用ONNX模型并将其用于评分预测。
翻译自: https://www.infoworld.com/article/3311871/microsoft-smartens-up-the-mlnet-machine-learning-api.html
微软机器翻译api