ai tensorflow
TensorFlow仍然是主导的AI建模框架。 大多数AI(人工智能)开发人员继续将其用作主要的开源工具,或者与PyTorch一起使用 ,在其中他们开发了大多数ML(机器学习),深度学习和NLP(自然语言处理)模型。
在O'Reilly 最近关于企业采用AI的调查中,超过一半的响应数据科学家将TensorFlow作为其主要工具。 这一发现使我重新思考上个月发布的猜测,即TensorFlow在工作数据科学家中的主导地位可能正在减弱。 不过,PyTorch仍然是第二选择,将O'Reilly研究中的使用范围从上一年的29%扩大到超过36%的受访者。
[ 也在InfoWorld上:PyTorch与TensorFlow:如何选择 ]
与PyTorch相比,提高TensorFlow堆栈的差异性
随着十年的发展,随着数据科学家和其他用户重视功能均等性而不是强大的功能差异性,这些框架之间的差异将逐渐缩小。 尽管如此,TensorFlow仍然是迄今为止最高的AI建模框架,不仅在采用和成熟度方面,而且在支持每种可能的AI开发,培训和部署方案的堆栈的深度和广度方面均如此。 尽管PyTorch能够应对80%的核心AI,深度学习和机器学习挑战,但要达到功能均等性还有很长的路要走。
上周,Google的TensorFlow团队将其堆栈与PyTorch分开了。 它通过直播举行了年度TensorFlow开发峰会 (出于每个人都知道的原因)。 尽管没有面对面的嗡嗡声,但这个纯在线事件还是产生了许多重要的新闻和分析 。
接下来是我对这些公告的讨论,该公告分为三大类:增强了TensorFlow核心及其生态系统,新的TensorFlow devops工具以及针对专业AI开发挑战的新TensorFlow附加组件。
增强TensorFlow核心及其生态系统
在对核心开源代码的增强方面,该团队宣布了TensorFlow 2.2 。 该最新版本与以前的TensorFlow版本不同,现在与整个TensorFlow生态系统兼容,它着重于核心库的性能和稳定性。 它还在核心添加了渴望执行的功能,支持NumPy数组,tf.data和TensorFlow数据集。
为了确保完全支持TensorFlow中构建的模型的跨设备编译,该团队宣布了TensorFlow Runtime,它将随核心开放源代码一起提供,并将确保ML模型在实现多级中间表示标准的不同设备和平台上工作。 ,得到了95%的硬件制造商的支持。
为了确保使用TensorFlow开发的模型可以在Google自己的神经网络处理器上运行,该团队宣布以前的版本TensorFlow 2.1也支持Cloud Tensor处理单元。
新的TensorFlow开发工具
许多企业AI开发人员使用TensorFlow在复杂的devops工作流程中构建,训练和部署深度学习,ML和NLP模型。 为了满足这些要求,团队宣布了在TensorFlow生态系统中提高团队生产力的新功能:
- 模型搜索和发现:该团队揭示了TensorFlow Hub的新功能,其中包含1,000多个现成的模型和代码片段。
- 超参数调整 :团队宣布了Keras Tuner ,它简化了调整模型超参数的任务,并与Keras,TensorFlow和scikit-learn一起使用。
- 简化的管道管理 : Google Cloud AI Pipelines使用TensorFlow Extended 简化了管道的管理 。
- 基于团队的实验共享 :团队发布了dev ,这是一个新工具,开发人员和研究人员可以使用该工具免费托管和共享基于模型的实验。 它提供有关模型性能,设备上的工作负载和输入管道的信息并进行分析。
- 灵活的神经网络训练 :该团队推出了神经结构学习 ,这是一种通过使用结构化信号以及功能输入来训练神经网络的工具。 结构化信号通常用于表示可能被标记或未标记的样本之间的关系或相似性。 在神经网络训练过程中利用这些信号可以同时利用标记和未标记的数据,并且可以提高模型的准确性,尤其是当标记的数据量相对较小时。
新的TensorFlow附加组件可应对特殊的AI开发挑战
TensorFlow用户正在从事一系列复杂的项目,这些项目从各个方向推动了AI的发展。 为了满足这些要求,团队宣布了以下新工具,扩展和插件,它们已插入TensorFlow的生态系统。
- 图形层和查看器 :计算机视觉是AI驱动解决方案的最热门细分市场之一。 为了支持这些开发人员,该团队宣布了TensorFlow Graphics ,其将图形功能作为一组可区分的图形层提供,以构建更有效的计算机视觉网络架构。 它包括空间转换器,图形渲染器和网格卷积。 它还包括可在TensorBoard中使用的3D查看器。 它可以将几何先验和约束条件进行显式建模到神经网络中,以构建可健壮,高效且以自我监督的方式进行训练的体系结构。
- NLP框架和模型 :自然语言处理是许多实际AI应用程序的核心。 TensorFlow团队发布了T5文本到文本转换转换器 ,该框架将转换学习应用于自然语言处理。 它还发布了Meena ,这是一种神经对话模型,可以学习对给定的对话环境做出明智的React。
- 基于浏览器的,特定于域的库 :TensorFlow中正在构建更多的AI模型,以将其部署到浏览器以及各种客户端和服务器端Web应用程序框架中。 为了加快开发人员在此类项目上的实现价值,团队宣布在TensorFlow.js中基于域的NPM软件包进行基于浏览器的执行。 其中包括HandPose(使用姿势估计来检测手上的地标),Face Mesh(预测人脸上的3D面部地标)和Mobile BERT(来自变形器的双向编码器表示)(移动设备上的自然语言处理)。 该团队发布了一个新的命令行转换器向导,以简化将模型转换为TensorFlow.js的过程。 它为TensorFlow.js启动了一个新的WebAssembly后端,以支持在CPU上的快速执行,以及一个新的Hugging Face NPM软件包,该软件包使开发人员可以在NodeJS中执行问题和回答。
- 分布式深度学习语言 :更多的AI项目涉及跨超级计算机,网格和其他复杂计算结构并行分布计算。 该团队宣布了Mesh TensorFlow ,它提供了一种用于模型并行和分布式深度学习的语言。 它为涉及网络连接的处理器的n维数组的各种场景指定了广泛的分布式张量计算类别。 这些场景可能包括以下部署:模型参数太多而无法放在一个设备上; 3D图像模型或其他数据示例太大,以至于其激活不适合在一个设备上;或者需要较低延迟的并行推理。
- 概率编程库 :概率编程工具可简化涉及复杂统计推理的AI应用程序的开发。 该团队宣布了TensorFlow Probability ,这是一个库,可轻松使用将统计推理与深度学习相结合的Python模型进行编程,并可在GPU(图形处理单元)和TPU(张量处理单元)上高效部署。 该库使数据科学家和其他开发人员可以对领域知识进行编码,以理解数据并做出预测。 它包括多种概率模型,层,分布和优化器。
- RL(强化学习)开发库: RL是AI中许多边缘,机器人技术,自动驾驶汽车和其他新领域的核心。 TensorFlow团队宣布推出TF-Agents ,这是一个用于在TensorFlow中设计,实现,测试和基准测试新RL算法的库。
- 模型公平性度量可视化工具 :公平,道德和减少偏见正变得越来越普遍,这是AI开发团队必须建立和培训其模型以实现的目标。 团队宣布了一个工具和库,使开发人员可以可视化其模型的公平性。 公平指标库可用于计算二进制和多类分类的通用公平指标,这些指标可以在TensorBoard上可视化。
- 用于量子计算环境的AI建模工具 :量子计算是AI应用程序的试验场,这些应用程序可能令人难以置信。 团队讨论了TensorFlow Quantum ,这是一个用于混合量子经典机器学习的库。 这种仅软件的新堆栈扩展了TensorFlow,以支持构建和训练要在量子计算平台上处理的ML模型。 由Google X研发部门开发的TensorFlow Quantum使数据科学家能够使用Python代码通过标准Keras函数开发量子ML模型。 它提供了一个与现有TensorFlow API兼容的量子电路模拟器和量子计算原语库。 要了解TensorFlow Quantum在这个新兴的细分市场中的位置,请查看我最近在InfoWorld上讨论该工具的文章 ,该文章在TensorFlow DevWorld 2020之前发布。
TensorFlow仍然是击败的AI建模框架
这是一系列极其广泛的公告,反映出Google及其母公司Alphabet在TensorFlow生态系统上投入的财力和财力。 综上所述,他们可能不会在AI开发人员中停止抱怨TensorFlow,许多人认为TensorFlow令人困惑,难以使用、,肿,缓慢,低效且过于复杂。 实际上,大量的新功能可能使这些问题恶化,以至于它们给更简单的AI建模框架带来缺陷。
尽管如此,从为生产环境构建任务关键型AI项目的专业数据科学家的角度来看,TensorFlow仍然是一个值得击败的框架。 本周的公告使它在重磅AI开发方面的优势更加明显。
ai tensorflow
TensorFlow在AI建模框架中保持领先地位,超过一半的数据科学家将其作为主要工具。Google的年度TensorFlow开发者峰会宣布了一系列增强功能,包括TensorFlow 2.2版本,TensorFlow Runtime,以及针对开发、训练和部署AI模型的新工具。此外,还发布了针对特殊AI开发挑战的附加组件,如TensorFlow Graphics,T5文本到文本转换器,和TensorFlow Quantum。


被折叠的 条评论
为什么被折叠?



