1.实验目的
正确理解方程求根划界法和开放法,能够编程实现其中指定的方法,并且通过比较,分析出两类方法的优缺点。
2.实验任务
3.相关知识
二分法理论:
首先应确定方程在[a,b]区间存在至少一个实数根。由高等数学知识可知,设 f(x)为区间[a,b]上的单值连续,如果 f(a)·f(b)<0,则[a,b]中至少有一个实根。如果f(x)在[a,b]上还是单调地递增或递减,则仅有一个实根.设方程 f(x)=0 在区间[a,b]内有根,二分法就是逐步收缩有根区间,最后得出所求的根。具体过程如下:
①取有根区间[a,b]的中点,将它分为两半,即 x0=(a+b)/2,这样就可以将有根区间缩小。
②对压缩了的有根区间[a1,b1]施行同样的手法,即取中点 x1=(a1+b1)/2,将区间[a1,b1]再次分成两半,然后再确定有根区间[a2,b2],其长度是[a1,b1]的二分之一。
牛顿法理论:
具体过程: