排序算法的python实现与算法分析——顺序查找(Sequential Search)

顺序查找

如果从类似于列表这样的集合中,按照顺序来访问和查找数据项,这种技术成称为“顺序查找”

无序表顺序查找,python代码:

##无序表顺利查找
def sequentialsearch(alist,item):
    pos=0
    found=False
    while pos < len(alist)  and not found:
        if alist[pos]==item:
            found=True
        else:
            pos=pos+1
    return found
# 实例测试
testlist=[1,2,32,8,17,19,42,13,0]
print (sequentialsearch(testlist,3))
print (sequentialsearch(testlist,32))

算法分析:首先确定基本计算步骤(该步骤足够简单,且反复执行),
顺序查找的基本步骤为:数据项的逐项对比,但数据项是随机放置于列表中
分为两种情形:数据项在列表中,与不在列表中,
(1)数据项在列表中:最好1次,最坏n次,平均n/2次。
(2)数据项不在列表中:需对比n次,

有序表顺序查找:

若先排序了列表,其算法复杂度是否产生较大区别:
分析:若该数据项存在,则对比过程相同,但是若数据项不存在,则可提前结束对比

##有序表顺序查找
def sequentialsearch(alist,item):
    pos=0
    found=False
    stop=False
    while pos < len(alist)  and not found and not stop :
        if alist[pos]==item:
            found=True
        else:
            if alist[pos] >item:
                stop=True
            else:
                pos=pos+1
    return found

testlist=[0,1,2,8,13,17,19,32,42]
# testlist=sorted(testlist)   若原数据集合不是有序表,该代码实现列表排序
print (sequentialsearch(testlist,3))
print (sequentialsearch(testlist,32))

算法分析:分数据项是否在列表中:
(1)数据项在列表中:最好1次,最坏n次,平均n/2次。
(2)数据项不在列表中:最好1次,最坏n次,平均n/2次。
总结:
算法复杂度区别:只有在数据项不存在的时候,有序表的查找可以节省一些对比次数,但并不改变其数量级,均为O(n)。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笨猪起飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值