我的人工智能破冰之路:向量化的意义

向量化对于人工智能编程意义重大

因为训练模型计算量巨大 需要很长计算时间 而向量化可以大大提升计算速度 可节约高达300倍时间成本

向量化为什么能节约高达几百倍时间成本呢

  1. Python底层基于C语言实现 每次循环计算时都会重复转换python代码为C代码 一次转换时间成本不明显 但若循环次数太多 那么转换所耗费的时间成本就是肉眼可见地庞大了
  2. 也有说法 梯度下降过程不断调整参数的值来完成梯度下降 使用循环来计算 时间成本巨大 因为计算机大部分是SIMD单指令流多数据流for循环每次循环一条指令 但是并没有进行并行计算 没有充分利用计算机计算资源
  3. 向量化操作的意义在于 把一大堆计算一次性转换为C语言 时间消耗只有一次 快 向量化以后并行计算充分利用计算机计算资源

人工智能编程过程尽量使用向量化取代循环

向量化是取代for循环的艺术
训练大数据集 就应该向量化数据 进行并行运算
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页