DiffSynth Studio 无GPU模型下载和运行调式

  File "E:\ai_proe\DiffSynthStudio3g\DiffSynth-Studio\.glut\lib\site-packages\streamlit\runtime\scriptrunner\script_runner.py", line 542, in _run_script
    exec(code, module.__dict__)
  File "E:\ai_proe\DiffSynthStudio3g\DiffSynth-Studio\pages\2_Video_Creator.py", line 197, in <module>
    SDVideoPipelineRunner(in_streamlit=True).run(config)
  File "E:\ai_proe\DiffSynthStudio3g\DiffSynth-Studio\diffsynth\pipelines\stable_diffusion_video.py", line 340, in run
    model_manager, pipe = self.load_pipeline(**config["models"])
  File "E:\ai_proe\DiffSynthStudio3g\DiffSynth-Studio\diffsynth\pipelines\stable_diffusion_video.py", line 273, in load_pipeline
    pipe = SDVideoPipeline.from_model_manager(
  File "E:\ai_proe\DiffSynthStudio3g\DiffSynth-Studio\diffsynth\pipelines\stable_diffusion_video.py", line 116, in from_model_manager
    pipe.fetch_main_models(model_manager)
  File "E:\ai_proe\DiffSynthStudio3g\DiffSynth-Studio\diffsynth\pipelines\stable_diffusion_video.py", line 82, in fetch_main_models
    self.text_encoder = model_manager.text_encoder
  File "E:\ai_proe\DiffSynthStudio3g\DiffSynth-Studio\diffsynth\models\__init__.py", line 237, in __getattr__
    return super.__getattribute__(__name)
TypeError: descriptor '__getattribute__' requires a 'super' object but received a 'str'
2025-04-06 03:39:09.795 Uncaught app exception

解释:需要一个模型,但是你没有

ypeError: descriptor '__getattribute__' requires a 'super' object but received a 'str'

开始下载模型

 

继续运行

aceback (most recent call last):
  File "E:\ai_proe\DiffSynthStudio3g\DiffSynth-Studio\.glut\lib\site-packages\streamlit\runtime\scriptrunner\script_runner.py", line 542, in _run_script
    exec(code, module.__dict__)
  File "E:\ai_proe\DiffSynthStudio3g\DiffSynth-Studio\pages\2_Video_Creator.py", line 197, in <module>
    SDVideoPipelineRunner(in_streamlit=True).run(config)
  File "E:\ai_proe\DiffSynthStudio3g\DiffSynth-Studio\diffsynth\pipelines\stable_diffusion_video.py", line 340, in run
    model_manager, pipe = self.load_pipeline(**config["models"])
  File "E:\ai_proe\DiffSynthStudio3g\DiffSynth-Studio\diffsynth\pipelines\stable_diffusion_video.py", line 272, in load_pipeline
    model_manager.load_models(model_list, lora_alphas=lora_alphas)
  File "E:\ai_proe\DiffSynthStudio3g\DiffSynth-Studio\diffsynth\models\__init__.py", line 211, in load_models
    self.load_model(file_path, lora_alphas=lora_alphas)
  File "E:\ai_proe\DiffSynthStudio3g\DiffSynth-Studio\diffsynth\models\__init__.py", line 201, in load_model
    self.load_sd_lora(state_dict, alpha=lora_alphas.pop(0))
  File "E:\ai_proe\DiffSynthStudio3g\DiffSynth-Studio\diffsynth\models\__init__.py", line 151, in load_sd_lora
    SDLoRA().add_lora_to_text_encoder(self.model["text_encoder"], state_dict, alpha=alpha, device=self.device)
KeyError: 'text_encoder'

 

 解释历史lora错误

   model_manager.load_models(model_list, lora_alphas=lora_alphas)
  File "E:\ai_proe\DiffSynthStudio3g\DiffSynth-Studio\diffsynth\models\__init__.py", line 211, in load_models
    self.load_model(file_path, lora_alphas=lora_alphas)

修改源码显示加载模型,方便定位出问题模型

所在路径diffsynth\models\__init__.py 191行

 def load_model(self, file_path, components=None, lora_alphas=[]):
        print(f"未来之窗 cyberwin model_name: {file_path} now ")
        state_dict = load_state_dict(file_path, torch_dtype=self.torch_dtype)
        if self.is_animatediff(state_dict):

再次运行视频制作

cyberwin model_name: models/stable_diffusion\stableDiffusion35VAE_official.safetensors now
cyberwin model_name: models/AnimateDiff\animatediffV3Models_adapterFP32.safetensors now
cyberwin model_name: models/lora\loraPeaceSign_v03.safetensors now
2025-04-06 14:11:51.436 Uncaught app exception
Traceback (most recent call last):

解释模型 stableDiffusion35VAE_official 正常 animatediffV3Models_adapterFP32 

loraPeaceSign_v03 但是lora错误了

立即更换lora模型

如何更换lora模型

 

搜索模型,并下载

lora模型运行监测-通过

cyberwin model_name: models/stable_diffusion\stableDiffusion35VAE_official.safetensors now
cyberwin model_name: models/AnimateDiff\animatediffV3Models_adapterFP32.safetensors now
cyberwin model_name: models/lora\lora_rioko.safetensors now
cyberwin model_name: models/ControlNet\15.safetensors now
cyberwin model_name: models/ControlNet\15.safetensors now
cyberwin model_name: models/ControlNet\15.safetensors now
2025-04-06 14:17:37.875 Uncaught app exception
Traceback (most recent call last):
  File "E:\ai_proe\DiffSynthStudio3g\DiffSynth-Studio\.glut\lib\site-packages\streamlit\runtime\scriptrunner\script_runner.py", line 542, in _run_script
    exec(code, module.__dict__)
  File "E:\ai_proe\DiffSynthStudio3g\DiffSynth-Studio\pages\2_Video_Creator.py", line 197, in <module>
    SDVideoPipelineRunner(in_streamlit=True).run(config)
  File "E:\ai_proe\DiffSynthStudio3g\DiffSynth-Studio\diffsynth\pipelines\stable_diffusion_video.py", line 340, in run
    model_manager, pipe = self.load_pipeline(*

 controlnet 模型报错

 

 

  controlnet 模型报错 版本解释

softedge,软边

openpose 开放姿态

lineart 线性

lineart_anime 线性动漫

canny 精明

depth 深度

tile 瓦

术语含义在 ControlNet 中的作用应用场景举例
Softedge(软边)提取图像边缘信息,边缘更柔和、连续,含更多细节和过渡帮助模型捕捉物体形状和轮廓,使生成图像边缘自然流畅风景图像生成,如勾勒山脉、河流边界
OpenPose(开放姿态)人体姿态估计模型,检测人体关键点获取姿态信息控制生成图像中人物姿态,确保肢体动作自然协调动画制作、游戏角色设计中特定动作人物图像生成
Lineart(线性)提取图像线条信息,简化为线条表示,突出物体轮廓和结构为模型提供图像基本架构指导,用于生成以线条结构为主的插画平面设计、漫画创作
Lineart_anime(线性动漫)针对动漫风格图像生成的线性控制模式,线条更简洁、夸张,突出动漫风格特征引导模型生成具有典型动漫风格线条的图像动漫角色、场景图像创作
Canny(Canny 边缘检测)经典边缘检测算法,明确图像中物体边缘位置模型依据其检测出的边缘信息生成完整图像,保证物体边缘准确建筑设计、机械制图等对边缘准确性要求高的图像生成
Depth(深度)图像中物体与相机(或观察者)之间的距离关系,即深度信息为模型提供图像三维空间结构线索,生成具有真实远近层次和空间感的图像虚拟现实、3D 场景生成
Tile(瓦片)将输入图像视为可重复的 “瓦片” 结构生成具有连续、重复图案且拼接处自然过渡的图像壁纸、织物纹理等需要重复图案的图像生成,如室内设计、纺织品设计

 

 

=====

下载链接和方法

https://huggingface.co/lllyasviel/ControlNet-v1-1/tree/main

内网共享直通车——内外网联通实用软件系统

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值