算法4第3章红黑树及习题讲解

二叉查找树在最坏的情况下性能很差时间复杂度是O(N),本节我们学习一种新的数据结构红黑树
它能保证操作在最坏情况下时间复杂度也是O(logN),无论怎么构造,它都能到达平衡,红黑树结构很复杂,首先我们学习一种叫2-3树的数据结构来帮忙对红黑树的理解。
一般的二叉查找树一个节点只能有一个键两个子节点,在2-3树中一个节点最多可以有两个键3个子节点,左子树中的键都比左边的键小,
中间子树的键大于左边的键小于右边的键,右子树的键都大于右边的键,2-3树的示意图如下

Anatomy of a 2-3 tree
//我们结合下图来理解2-3树的构造过程,

插入的过程总是先把一个节点插入满3个键再进行分离,看右图的过程,先插入A,C,然后插入E,此时节点含3个键进行分裂,A,E各占一个节点,C移到父节点,然后插入H,L后再进行分裂,H移到父节点,然后L,M,P进行分裂,M移到父节点,这时父节点包含CHM3个键,所以父节点继续往上分裂,分裂的过程不会影响数的有序性和平衡性

从图中可以看出不论怎么构造2-3树总能达到平衡
直接用2-3树这种数据结构来达到平衡行也可以实现,但是不太方便,因为要考虑的情况太多
红黑树对2-3树的结构做了些改变,使用简单的结构就可以表达和实现2-3树
红黑树把2-3树中含有两个键的节点想象成2个用红线连接在一起的节点,2-3树中的普通链接用黑线表示,这样红黑树还是一棵二叉树,红黑树和2-3树的对应关系如下

1-1 correspondence between left-leaning red-black BSTs and 2-3 trees
红黑树有以下特征:

1.红链接均为左链接

2.没有节点同时和2个红链接相连,相当于含3个键的2-3树

3.红黑树是完美黑色平衡的,即每个叶子节点到根节点黑链接数量相同
//红黑树的实现过程如下:

public class RedBlackBST<Key extends Comparable<Key>, Value> {

    private static final boolean RED   = true;
    private static final boolean BLACK = false;

    private Node root;     // root of the BST

    // BST helper node data type
    private class Node {
        private Key key;           // key
        private Value val;         // associated data
        private Node left, right;  // links to left and right subtrees
        private boolean color;     // color of parent link,每个节点增加一个颜色值,代表父节点指向自己链接的颜色
        private int size;          // subtree count

        public Node(Key key, Value val, boolean color, int size) {
            this.key = key;
            this.val = val;
            this.color = color;
            this.size = size;
        }
    }
    
    /**
     * Initializes an empty symbol table.
     */
    public RedBlackBST() {
    }

   /***************************************************************************
    *  Node helper methods.
    ***************************************************************************/
    // is node x red; false if x is null ?
    private boolean isRed(Node x) {
        if (x == null) return false;
        return x.color == RED;
    }

    // number of node in subtree rooted at x; 0 if x is null
    private int size(Node x) {
        if (x == null) return 0;
        return x.size;
    }


    /**
     * Returns the number of key-value pairs in this symbol table.
     * @return the number of key-value pairs in this symbol table
     */
    public int size() {
        return size(root);
    }

   /**
     * Is this symbol table empty?
     * @return {@code true} if this symbol table is empty and {@code false} otherwise
     */
    public boolean isEmpty() {
        return root == null;
    }
    
    /**
     * Does this symbol table contain the given key?
     * @param key the key
     * @return {@code true} if this symbol table contains {@code key} and
     *     {@code false} otherwise
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public boolean contains(Key key) {
        return get(key) != null;
    }


   /***************************************************************************
    *  Standard BST search.
    ***************************************************************************/

    /**
     * Returns the value associated with the given key.
     * @param key the key
     * @return the value associated with the given key if the key is in the symbol table
     *     and {@code null} if the key is not in the symbol table
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public Value get(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to get() is null");
        return get(root, key);
    }

    // value associated with the given key in subtree rooted at x; null if no such key
    private Value get(Node x, Key key) {
        while (x != null) {
            int cmp = key.compareTo(x.key);
            if (cmp < 0) x = x.left;
            else if(cmp > 0) x = x.right;
            else  return x.val;
        }
        return null;
    }
    
    /***************************************************************************
     *  Red-black tree insertion.
     ***************************************************************************/

     /**
      * Inserts the specified key-value pair into the symbol table, overwriting the old
      * value with the new value if the symbol table already contains the specified key.
      * Deletes the specified key (and its associated value) from this symbol table
      * if the specified value is {@code null}.
      *
      * @param key the key
      * @param val the value
      * @throws IllegalArgumentException if {@code key} is {@code null}
      */
     public void put(Key key, Value val) {
         if (key == null) throw new IllegalArgumentException("first argument to put() is null");
         if (val == null) {
             delete(key);
             return;
         }

         root = put(root, key, val);
         root.color = BLACK;
         // assert check();
     }
     
     // insert the key-value pair in the subtree rooted at h
     //2-3树在插入过程中总是先往一个节点中插,当节点中键的个数为3时再分裂成2个含有1个键的节点,另一个键移到父节点中,
     //移动后如果父节点变成含3个键的节点,则再分裂父节点
     //红黑树也是一样,插入的节点总是先标记为红色,然后如果不满足红黑树的特征再进行分裂转换
     private Node put(Node h, Key key, Value val) {
         if (h == null) return new Node(key, val, RED, 1); //插入的节点先标记为红色

         int cmp = key.compareTo(h.key);
         if      (cmp < 0) h.left  = put(h.left,  key, val);
         else if (cmp > 0) h.right = put(h.right, key, val);
         else              h.val   = val;
         
         // 插入节点后可能有下面这些情况导致不满足红黑树的特征,需要把h子树进行转换,转换后可能导致父节点构成的子树不满足特征,所以每层递归都要进行转换检查,参考上图
         //并且要按照情况1,2,3的顺序来检查,因为情况1转换完可能出现情况2,情况2转换完可能出现情况3
         //情况1:插入节点后h子树右链接是红色,左链接是黑色,需要进行往左旋转的操作,把红色链接转到左边
         if (isRed(h.right) && !isRed(h.left))    h = rotateLeft(h);
         //情况2:插入节点后h子树左链接是红色,左链接的左链接也是红色,需要进行往右旋转的操作,这种情况的出现类似2-3树中子节点键个数满3个向父节点分裂
         //然后导致父节点也刚好满3个了,需要继续往上分裂转换
         if (isRed(h.left)  &&  isRed(h.left.left)) h = rotateRight(h);
         //情况3:插入节点后h子树左链接和右链接都是红色,需要进行转换颜色的操作,类型2-3树往父亲节点分裂,这种情况也可能是情况2转变过来的
         if (isRed(h.left)  &&  isRed(h.right))     flipColors(h);
         
         h.size = size(h.left) + size(h.right) + 1;
         
         return h;
     }
     
    //左旋转可以通过下图理解
  
     private Node rotateLeft(Node h) {
         // assert (h != null) && isRed(h.right);
         Node x = h.right;
         h.right = x.left;
         x.left = h;
         x.color = h.color;
         x.left.color = RED;
         x.size = h.size;
         h.size = size(h.left) + size(h.right) + 1;
         return x;
     }

     // make a left-leaning link lean to the right
     private Node rotateRight(Node h) {
         // assert (h != null) && isRed(h.left);
         Node x = h.left;
         h.left = x.right;
         x.right = h;
         x.color = h.color;
         x.right.color = RED;
         x.size = h.size;
         h.size = size(h.left) + size(h.right) + 1;
         return x;
     }

     // flip the colors of a node and its two children
     private void flipColors(Node h) {
         // h must have opposite color of its two children
         // assert (h != null) && (h.left != null) && (h.right != null);
         // assert (!isRed(h) &&  isRed(h.left) &&  isRed(h.right))
         //    || (isRed(h)  && !isRed(h.left) && !isRed(h.right));
         h.color = !h.color;
         h.left.color = !h.left.color;
         h.right.color = !h.right.color;
     }
    
        /***************************************************************************
    *  Red-black tree deletion.
    ***************************************************************************/

    /**
     * Removes the smallest key and associated value from the symbol table.
     * @throws NoSuchElementException if the symbol table is empty
     */

我们还是通过2-3树来理解红黑树的删除操作,如下图左边的图如果删除a节点会导致树失去平衡,而右边的树删除a节点还是平衡的,因为还有个x键

所以删除最小键过程中检查每个左子节点,如果发现左子节点中只含有一个键则进行分裂的逆操作,把该节点再添加一个键,这样在删除最小键后,节点不会为空,从而保持了树的平衡性。

为左子节点添加一个键有3种情况:

情况1:如果左子节点含有2个以上的键则不做操作,

情况2:如果左子节点只有一个键,而它的兄弟节点有2个以上的键,则从兄弟节点中借一个键过来,过程如下图,代码对应moveRedLeft

情况3:如果左子节点和它的兄弟节点都只有一个键,则从父节点借一个最小节点与左子节点和兄弟节点组合在一起,过程如下图,代码对应moveRedLeft里面的flipColor操作


    public void deleteMin() {
        if (isEmpty()) throw new NoSuchElementException("BST underflow");

        // if both children of root are black, set root to red
        if (!isRed(root.left) && !isRed(root.right))
            root.color = RED;

        root = deleteMin(root);
        if (!isEmpty()) root.color = BLACK;
        // assert check();
    }

    // delete the key-value pair with the minimum key rooted at h
    private Node deleteMin(Node h) {
        if (h.left == null)
            return null;

//说明h.left只含有一个键

        if (!isRed(h.left) && !isRed(h.left.left))
            h = moveRedLeft(h);

        h.left = deleteMin(h.left);

//最后对树进行平衡操作
        return balance(h);
    }

 

  // Assuming that h is red and both h.left and h.left.left
    // are black, make h.left or one of its children red.
    private Node moveRedLeft(Node h) {
        // assert (h != null);
        // assert isRed(h) && !isRed(h.left) && !isRed(h.left.left);

        flipColors(h);

//平衡树的特征只有左链接可能是红色,所以兄弟节点有多个键时只能左链接是红色
        if (isRed(h.right.left)) {
            h.right = rotateRight(h.right);
            h = rotateLeft(h);
            flipColors(h);
        }
        return h;
    }


    /**
     * Removes the largest key and associated value from the symbol table.
     * @throws NoSuchElementException if the symbol table is empty
     */
    public void deleteMax() {
        if (isEmpty()) throw new NoSuchElementException("BST underflow");

        // if both children of root are black, set root to red
        if (!isRed(root.left) && !isRed(root.right))
            root.color = RED;

        root = deleteMax(root);
        if (!isEmpty()) root.color = BLACK;
        // assert check();
    }

    // delete the key-value pair with the maximum key rooted at h

删除最大值得过程跟删除最小值类似,也是给右子节点增加一个键,由于红链接都在左边,所以需要执行 if (isRed(h.left)) h = rotateRight(h);通过下图来理解,右节点l和它的兄弟节点都只有一个键,所以和左子节点规则一样从父节点和兄弟节点拿一个键与l组合起来,如果是右链接是红色可以直接通过flipcolor来实现,但红链接都在左边,所以中间加了一个roteright操作,再flipcolor就可以了。


    private Node deleteMax(Node h) {

//下面的判断也可以放到moveRedRight中,这样下一句可以改成        if (h.right == null) return r.left;
        if (isRed(h.left))
            h = rotateRight(h);

//从前面红黑树的构造图可以得出最大节点的左子节点要么为空,要么是个红链接的左子节点,但通过上面的rotateRight操作后

最大节点的左子节点一定为空

        if (h.right == null)
            return null;

        if (!isRed(h.right) && !isRed(h.right.left))
            h = moveRedRight(h);

        h.right = deleteMax(h.right);

        return balance(h);
    }

    /**
     * Removes the specified key and its associated value from this symbol table     
     * (if the key is in this symbol table).    
     *
     * @param  key the key
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public void delete(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to delete() is null");
        if (!contains(key)) return;

        // if both children of root are black, set root to red
        if (!isRed(root.left) && !isRed(root.right))
            root.color = RED;

        root = delete(root, key);
        if (!isEmpty()) root.color = BLACK;
        // assert check();
    }

    // delete the key-value pair with the given key rooted at h

删除操作结合了deleteMin/deleteMax和二叉查找树的delete操作
    private Node delete(Node h, Key key) {
        // assert get(h, key) != null;

//说明待删除节点再左子树中,需要保证左子树中每个待检测的节点都含有2个及以上键,类似deletemin

        if (key.compareTo(h.key) < 0)  {
            if (!isRed(h.left) && !isRed(h.left.left))
                h = moveRedLeft(h);
            h.left = delete(h.left, key);
        }

//说明待删除节点是h节点或在右子树中,类似deletemax
        else {
            if (isRed(h.left))
                h = rotateRight(h);
            if (key.compareTo(h.key) == 0 && (h.right == null))
                return null;
            if (!isRed(h.right) && !isRed(h.right.left))
                h = moveRedRight(h);

//如果待删除节点是h节点,进行二叉树的删除操作,从h.right中找出最小键替代h,

这个操作其实相当于待删除的键是在h.right中,所以在进行删除前需要先执行上一句的moveRedRight保证h.right节点含有2个及以上的键
            if (key.compareTo(h.key) == 0) {
                Node x = min(h.right);
                h.key = x.key;
                h.val = x.val;
                // h.val = get(h.right, min(h.right).key);
                // h.key = min(h.right).key;
                h.right = deleteMin(h.right);
            }
            else h.right = delete(h.right, key);
        }
        return balance(h);
    }
  

    // Assuming that h is red and both h.right and h.right.left
    // are black, make h.right or one of its children red.
    private Node moveRedRight(Node h) {
        // assert (h != null);
        // assert isRed(h) && !isRed(h.right) && !isRed(h.right.left);
        flipColors(h);
        if (isRed(h.left.left)) {
            h = rotateRight(h);
            flipColors(h);
        }
        return h;
    }

    // restore red-black tree invariant
    private Node balance(Node h) {
        // assert (h != null);

        if (isRed(h.right))                      h = rotateLeft(h);
        if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
        if (isRed(h.left) && isRed(h.right))     flipColors(h);

        h.size = size(h.left) + size(h.right) + 1;
        return h;
    }


   /***************************************************************************
    *  Utility functions.
    ***************************************************************************/

    /**
     * Returns the height of the BST (for debugging).
     * @return the height of the BST (a 1-node tree has height 0)
     */
    public int height() {
        return height(root);
    }
    private int height(Node x) {
        if (x == null) return -1;
        return 1 + Math.max(height(x.left), height(x.right));
    }

   /***************************************************************************
    *  Ordered symbol table methods.
    ***************************************************************************/

    /**
     * Returns the smallest key in the symbol table.
     * @return the smallest key in the symbol table
     * @throws NoSuchElementException if the symbol table is empty
     */
    public Key min() {
        if (isEmpty()) throw new NoSuchElementException("calls min() with empty symbol table");
        return min(root).key;
    }

    // the smallest key in subtree rooted at x; null if no such key
    private Node min(Node x) {
        // assert x != null;
        if (x.left == null) return x;
        else                return min(x.left);
    }

    /**
     * Returns the largest key in the symbol table.
     * @return the largest key in the symbol table
     * @throws NoSuchElementException if the symbol table is empty
     */
    public Key max() {
        if (isEmpty()) throw new NoSuchElementException("calls max() with empty symbol table");
        return max(root).key;
    }

    // the largest key in the subtree rooted at x; null if no such key
    private Node max(Node x) {
        // assert x != null;
        if (x.right == null) return x;
        else                 return max(x.right);
    }


    /**
     * Returns the largest key in the symbol table less than or equal to {@code key}.
     * @param key the key
     * @return the largest key in the symbol table less than or equal to {@code key}
     * @throws NoSuchElementException if there is no such key
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public Key floor(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to floor() is null");
        if (isEmpty()) throw new NoSuchElementException("calls floor() with empty symbol table");
        Node x = floor(root, key);
        if (x == null) return null;
        else           return x.key;
    }    

    // the largest key in the subtree rooted at x less than or equal to the given key
    private Node floor(Node x, Key key) {
        if (x == null) return null;
        int cmp = key.compareTo(x.key);
        if (cmp == 0) return x;
        if (cmp < 0)  return floor(x.left, key);
        Node t = floor(x.right, key);
        if (t != null) return t;
        else           return x;
    }

    /**
     * Returns the smallest key in the symbol table greater than or equal to {@code key}.
     * @param key the key
     * @return the smallest key in the symbol table greater than or equal to {@code key}
     * @throws NoSuchElementException if there is no such key
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public Key ceiling(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to ceiling() is null");
        if (isEmpty()) throw new NoSuchElementException("calls ceiling() with empty symbol table");
        Node x = ceiling(root, key);
        if (x == null) return null;
        else           return x.key;  
    }

    // the smallest key in the subtree rooted at x greater than or equal to the given key
    private Node ceiling(Node x, Key key) {  
        if (x == null) return null;
        int cmp = key.compareTo(x.key);
        if (cmp == 0) return x;
        if (cmp > 0)  return ceiling(x.right, key);
        Node t = ceiling(x.left, key);
        if (t != null) return t;
        else           return x;
    }

    /**
     * Return the key in the symbol table whose rank is {@code k}.
     * This is the (k+1)st smallest key in the symbol table.
     *
     * @param  k the order statistic
     * @return the key in the symbol table of rank {@code k}
     * @throws IllegalArgumentException unless {@code k} is between 0 and
     *        <em>n</em>–1
     */
    public Key select(int k) {
        if (k < 0 || k >= size()) {
            throw new IllegalArgumentException("argument to select() is invalid: " + k);
        }
        Node x = select(root, k);
        return x.key;
    }

    // the key of rank k in the subtree rooted at x
    private Node select(Node x, int k) {
        // assert x != null;
        // assert k >= 0 && k < size(x);
        int t = size(x.left);
        if      (t > k) return select(x.left,  k);
        else if (t < k) return select(x.right, k-t-1);
        else            return x;
    }

    /**
     * Return the number of keys in the symbol table strictly less than {@code key}.
     * @param key the key
     * @return the number of keys in the symbol table strictly less than {@code key}
     * @throws IllegalArgumentException if {@code key} is {@code null}
     */
    public int rank(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to rank() is null");
        return rank(key, root);
    }

    // number of keys less than key in the subtree rooted at x
    private int rank(Key key, Node x) {
        if (x == null) return 0;
        int cmp = key.compareTo(x.key);
        if      (cmp < 0) return rank(key, x.left);
        else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
        else              return size(x.left);
    }

   /***************************************************************************
    *  Range count and range search.
    ***************************************************************************/

    /**
     * Returns all keys in the symbol table as an {@code Iterable}.
     * To iterate over all of the keys in the symbol table named {@code st},
     * use the foreach notation: {@code for (Key key : st.keys())}.
     * @return all keys in the symbol table as an {@code Iterable}
     */
    public Iterable<Key> keys() {
        if (isEmpty()) return new Queue<Key>();
        return keys(min(), max());
    }

    /**
     * Returns all keys in the symbol table in the given range,
     * as an {@code Iterable}.
     *
     * @param  lo minimum endpoint
     * @param  hi maximum endpoint
     * @return all keys in the sybol table between {@code lo}
     *    (inclusive) and {@code hi} (inclusive) as an {@code Iterable}
     * @throws IllegalArgumentException if either {@code lo} or {@code hi}
     *    is {@code null}
     */
    public Iterable<Key> keys(Key lo, Key hi) {
        if (lo == null) throw new IllegalArgumentException("first argument to keys() is null");
        if (hi == null) throw new IllegalArgumentException("second argument to keys() is null");

        Queue<Key> queue = new Queue<Key>();
        // if (isEmpty() || lo.compareTo(hi) > 0) return queue;
        keys(root, queue, lo, hi);
        return queue;
    }

    // add the keys between lo and hi in the subtree rooted at x
    // to the queue
    private void keys(Node x, Queue<Key> queue, Key lo, Key hi) {
        if (x == null) return;
        int cmplo = lo.compareTo(x.key);
        int cmphi = hi.compareTo(x.key);
        if (cmplo < 0) keys(x.left, queue, lo, hi);
        if (cmplo <= 0 && cmphi >= 0) queue.enqueue(x.key);
        if (cmphi > 0) keys(x.right, queue, lo, hi);
    }

    /**
     * Returns the number of keys in the symbol table in the given range.
     *
     * @param  lo minimum endpoint
     * @param  hi maximum endpoint
     * @return the number of keys in the sybol table between {@code lo}
     *    (inclusive) and {@code hi} (inclusive)
     * @throws IllegalArgumentException if either {@code lo} or {@code hi}
     *    is {@code null}
     */
    public int size(Key lo, Key hi) {
        if (lo == null) throw new IllegalArgumentException("first argument to size() is null");
        if (hi == null) throw new IllegalArgumentException("second argument to size() is null");

        if (lo.compareTo(hi) > 0) return 0;
        if (contains(hi)) return rank(hi) - rank(lo) + 1;
        else              return rank(hi) - rank(lo);
    }


   /***************************************************************************
    *  Check integrity of red-black tree data structure.
    ***************************************************************************/
    private boolean check() {
        if (!isBST())            StdOut.println("Not in symmetric order");
        if (!isSizeConsistent()) StdOut.println("Subtree counts not consistent");
        if (!isRankConsistent()) StdOut.println("Ranks not consistent");
        if (!is23())             StdOut.println("Not a 2-3 tree");
        if (!isBalanced())       StdOut.println("Not balanced");
        return isBST() && isSizeConsistent() && isRankConsistent() && is23() && isBalanced();
    }

    // does this binary tree satisfy symmetric order?
    // Note: this test also ensures that data structure is a binary tree since order is strict
    private boolean isBST() {
        return isBST(root, null, null);
    }

    // is the tree rooted at x a BST with all keys strictly between min and max
    // (if min or max is null, treat as empty constraint)
    // Credit: Bob Dondero's elegant solution
    private boolean isBST(Node x, Key min, Key max) {
        if (x == null) return true;
        if (min != null && x.key.compareTo(min) <= 0) return false;
        if (max != null && x.key.compareTo(max) >= 0) return false;
        return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);
    }

    // are the size fields correct?
    private boolean isSizeConsistent() { return isSizeConsistent(root); }
    private boolean isSizeConsistent(Node x) {
        if (x == null) return true;
        if (x.size != size(x.left) + size(x.right) + 1) return false;
        return isSizeConsistent(x.left) && isSizeConsistent(x.right);
    }

    // check that ranks are consistent
    private boolean isRankConsistent() {
        for (int i = 0; i < size(); i++)
            if (i != rank(select(i))) return false;
        for (Key key : keys())
            if (key.compareTo(select(rank(key))) != 0) return false;
        return true;
    }

    // Does the tree have no red right links, and at most one (left)
    // red links in a row on any path?
    private boolean is23() { return is23(root); }
    private boolean is23(Node x) {
        if (x == null) return true;
        if (isRed(x.right)) return false;
        if (x != root && isRed(x) && isRed(x.left))
            return false;
        return is23(x.left) && is23(x.right);
    }

    // do all paths from root to leaf have same number of black edges?
    private boolean isBalanced() {
        int black = 0;     // number of black links on path from root to min
        Node x = root;
        while (x != null) {
            if (!isRed(x)) black++;
            x = x.left;
        }
        return isBalanced(root, black);
    }

    // does every path from the root to a leaf have the given number of black links?
    private boolean isBalanced(Node x, int black) {
        if (x == null) return black == 0;
        if (!isRed(x)) black--;
        return isBalanced(x.left, black) && isBalanced(x.right, black);
    }


    /**
     * Unit tests the {@code RedBlackBST} data type.
     *
     * @param args the command-line arguments
     */
    public static void main(String[] args) {
        RedBlackBST<String, Integer> st = new RedBlackBST<String, Integer>();
        for (int i = 0; !StdIn.isEmpty(); i++) {
            String key = StdIn.readString();
            st.put(key, i);
        }
        for (String s : st.keys())
            StdOut.println(s + " " + st.get(s));
        StdOut.println();
    }

}

 

相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页