标准差,指 一次抽样中 个体取值间的离散程度,反映了 个体取值对样本均值的代表性。
标准误,指 多次抽样中 样本均值间的离散程度,反映了 样本均值对总体均值的代表性。
假设总体包含的个体集合是
x
1
,
x
2
,
.
.
.
,
x
N
x_1,x_2,...,x_N
x1,x2,...,xN。
对总体抽样m次,每次抽样的样本容量为n,可得下表的m个样本,每个样本,包括n个个体。
表中,
x
1
,
x
2
,
.
.
.
,
x
m
n
x_1,x_2,...,x_{mn}
x1,x2,...,xmn都是取值自
x
1
,
x
2
,
.
.
.
,
x
N
x_1,x_2,...,x_N
x1,x2,...,xN的个体。

计算公式

问题是,样本均值 v.s. 总体均值,样本标准差 v.s. 总体标准差,有什么关系呢?回答这个问题的依据,就是“中心极限定理”。
中心极限定理:从均值为
μ
\mu
μ、方差为
σ
2
\sigma^2
σ2的总体中,抽取 样本容量为n的样本,当n充分大时,样本均值
X
ˉ
\bar{X}
Xˉ的抽样分布近似服从均值为
μ
\mu
μ、方差为
σ
2
/
n
\sigma^2/n
σ2/n的正态分布。
更多内容关注公众号原文-厘清标准差和标准误:因果推断的统计学基础
更多内容欢迎关注微信公众号:瑞行AI
5309

被折叠的 条评论
为什么被折叠?



