厘清标准差和标准误:因果推断的统计学基础

标准差,指 一次抽样中 个体取值间的离散程度,反映了 个体取值对样本均值的代表性。
标准误,指 多次抽样中 样本均值间的离散程度,反映了 样本均值对总体均值的代表性。

公众号原文-厘清标准差和标准误:因果推断的统计学基础

假设总体包含的个体集合是 x 1 , x 2 , . . . , x N x_1,x_2,...,x_N x1,x2,...,xN
对总体抽样m次,每次抽样的样本容量为n,可得下表的m个样本,每个样本,包括n个个体。
表中, x 1 , x 2 , . . . , x m n x_1,x_2,...,x_{mn} x1,x2,...,xmn都是取值自 x 1 , x 2 , . . . , x N x_1,x_2,...,x_N x1,x2,...,xN的个体。
在这里插入图片描述

计算公式

在这里插入图片描述

问题是,样本均值 v.s. 总体均值,样本标准差 v.s. 总体标准差,有什么关系呢?回答这个问题的依据,就是“中心极限定理”。
中心极限定理:从均值为 μ \mu μ、方差为 σ 2 \sigma^2 σ2的总体中,抽取 样本容量为n的样本,当n充分大时,样本均值 X ˉ \bar{X} Xˉ的抽样分布近似服从均值为 μ \mu μ、方差为 σ 2 / n \sigma^2/n σ2/n的正态分布。

更多内容关注公众号原文-厘清标准差和标准误:因果推断的统计学基础

更多内容欢迎关注微信公众号:瑞行AI

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值