榜单精选|郑宇博士:用大数据和 AI 驱动智能城市

内容简介从城市数据的感知和获取到城市数据的管理,再到城市数据的分析个挖掘,以及服务和提供,在不干扰人们生活的情况下,如何用大数据和人工智能技术来解决我们生活中的各种问题和挑战?本次案例分享由“城市计算”的提出者——郑宇博士为大家亲自讲述。



1 利用大数据解决城市面临的挑战

生活越来越现代化,伴随的困扰也越来越多,交通拥堵、环境恶化、能耗增加,当我们有了大规模的数据,也有了人工智能和机器学习,还有云计算这样的计算单元,就使得我们有能力利用数据和算法来解决城市里面临的挑战。早在 2008 年我们便已经提出了城市计算,从城市数据的感知和获取到城市数据的管理,再到城市数据的分析个挖掘,以及服务和提供,我们把这四个层面在不干扰人的生活的情况下,用大数据和人工智能技术来解决我们生活中的各种问题和挑战。





2 利用大数据改进医疗应急服务

让我们一起来梳理下在城市计算的各个层面中需要哪些典型的技术、案例及经典问题。在城市感知层面,通过 120 调度救护系统来看一个真实的案例。当真实的 120 的求救信号已有,就会知道什么时间有多少人呼叫救护车,进而可以对站点的位置进行重新布局。通过数据计算重新布置站点,使得救护车出发的时间缩短 30%。可以挽救更多人的生命。而站点里面到底放多少救护车这不是静态的过程,是一个调度的问题,智能调度能够使得运力提高,在不增加救护车数量的情况下,把运力再提高。




3 城市大数据

数据管理层面,我们很多的数据,第一个特点是时空大数据;第二,我们在做数据管理的时候会遇到时空算法;第三点,要把以前的云增强。数据虽然在城市里面有千百万种,但是根据结果来讲就是两种,一个是点数据,一个是网数据,根据这个数据关联的时间个空间属性,是否动态变化,还分成三列,一个是时间方面和空间方面都是静态的,一个是空间静态但是时间动态,另外一类就是实践和空间都静态。



说到大数据,便会提到云平台。现在任何一家公司的云都完美支持前面提到时空大数据和城市大数据。原因包括:第一、我们时空数据的格式数据结构不一样,数据结构对存储带来了更大的需求;第二、查询方法不一样,采用动态的查询。这种方法不同于以前的文本查询;第三、真正的大数据,需要多元数据融合,发现数据之间的关联关系。



4 寻找最具影响力的位置查询

举个贵阳市充电桩选址的例子,根据过去一年贵阳出租车的GPS轨迹,布置 5 个充电桩的摆放位置,放在哪儿能使车的总流量是最大化呢?这个组合非常多,但借助分布式平台加上时空索引的方法,只需要3秒钟,就能得到一轮的结果。而对于不符合条件的充电桩,根据行业专家的经验反馈把它拿掉,再让算法计算,再产生新的结果,这样形成了人和机器的交互,人的智能和机器的智能结合在一起,把数据科学和行业结合在一起。通过动态交互科室分析的方法,就需要后面强大的平台支撑,就需要数据和平台的结合。




5 基于移动数据的自行车道规划

再看一个共享单车的例子,近两年,共享单车出现,人们对于自行车的需求也重新回来了,但自行车道的规划显然跟不上骑行的需求。自行车道的规划容易吗?其实不然,它需要具备三个条件:第一、金钱和空间的限制;第二,最大限度的利用;第三,道路在局部要联通。摩拜给我们来了不光是体验需求,还带来了大量的自行车的骑行轨迹。根据这个轨迹数据,就可以知道政府决策如何修建自行车道,这就是人工智能算法如何自动根据数据来生成的自行车道的规划。



只是管理数据远远不够,还需要知识的提炼,这里面临四方面的挑战,第一、把针对图像、文本的机器学习算法转移到服务于时空大数据;第二、交通、空气、经济、社交媒体,如何融合这些数据,是一个难点;第三、机器学习和数据管理这两方面的知识要有机的融合,缺一不可;第四、把行业的知识和人带进来,形成闭环,这样的大数据应用才能落地。




6 赋予智能云上的许多应用程序

这是物理系统层面的问题,在这个层面还有机器学习层面,一个最基本的机器学习模块,而第二层面就针对时空数据专门设计了一些机器学习算法,把这些放在云上,这是以前没有的。并且我们有多元数据融合方法,把多元数据融合放在一起。




7 面临的挑战

时空数据有空间距离,有层次、时间以及趋势、周期,特别是周期和趋势。这是在以前的数据里所不具备的。周期性会打破时间邻近性的规则,以前我们在视频数据里面只要时间邻近性,没有周期性,而周期也不是静态的。


将城市分成均匀的网格,把城市大数据投在网格里,数每个网格里面有多少人进与出,这样转化成一个矩阵。如果有很多类似的时间序列,在每个时间点我们会对它的事件、天气的输入,我们就可以预测下一个时间点这个城市是什么样子。



8 基于阶段的数字融合

大数据不是单一数据,而是多元数据融合,融合之后才能发挥更加多的作用,这个大数据融合的能力就是制高点。到底怎么融合呢?就是三种大的方法,第一基于阶段性的方法;第二种方法,基于特征拼接的方法;第三是人气,人们出行的习惯来反映这个地域的价值。




9 利用大数据对房地产进行排列和聚类

关于房子的地段,通过数据的量化能提取很多特征,把红色的拼在一起,预测房屋的涨幅是多少。很多年前大家认为这就是数据融合。其实不然,数据和数据一定是有相关性,它应该成对,这样的话对我们预测准确率的提升是有帮助的。




10 为当城市空气遇见大数据

基于多视角的融合方法,国家一到空气不好的时候就发布预警,国家建了很多的空气质量监测站,每个图标就是一个站点,红色很差,绿色很好,不同站点之间差异非常大。空气质量受很多的复杂因素影响,这个因素在每个角落是不一样的,所以同一个城市,呼吸的空气是不一样的。


借助大数据人工智能的方法,基于两类数据,把整个城市里面一公里的数据时时算出来。基于两部分数据,利用机器学习的方法,来学习一个地方它的数据跟这个地方对应空气质量的关系,一旦模型选好后,这些数据就已经时时存在,不需要建任何新的基础设施。可以点地图的任何地方,即便这个地方没有建站点,我就告诉你这个空气质量是多少。




11 为当城市空气遇见大数据

再举一个例子,这和我们环境、交通、规划、能源都有相关性。谁能告诉我在过去一个小时里面,北京市路面上所有车的总油耗是多少?这些车烧了多少油,产生多少PM2.5排放量呢?政府可能都不知道。



我们能将计算出每个城市每一条路上过去10分钟每个车的油耗、流量、排放,这是基于一部分GPS、路网、天气,以多样融合的方法实现,这个系统也已经在贵阳落地。




12 迁移学习

我们一直有一种能力,当看到桌子,就知道哪个是椅子,但在计算深度学习的方法中,看一万张图片可能都不知道猫是什么样子,深度学习解决的是特征表达的问题。这个知识怎么能用到我们生活中来呢,解决城市大数据的问题。




13 许多城市缺乏数据

在某些地区,因为城市比较新,或者城市基础设施比较弱,数据库不全或者没有,导致地方数据缺失。怎么办呢?这使得很多的项目不能推广,所以很多智慧城市的项目不能复制,不能全国化。




14 城市间的知识转移

能不能把一个城市里面数据知识转移到另一个城市,帮助其他的城市来落地这个项目,把不同城市的知识性转移。但,不能简单的把北京的空气质量模型训练好后直接拿到上海去,肯定不行。那么,什么可以迁移?第一,数据和数据之间的关系可以迁移;第二,数据表征不一样,但是数据投向影像空间的时候是一样。




总结和思考


城市大数据需要哪些东西?第一、需要多方面知识,大数据、AI、云平台,以及行业知识;第二、需要平台,既要有模型、数据管理,也要有机器学习算法和可视化算法,才是个综合平台;第三、时空数据很不一样。最后一点,人工智能在时空数据领域非常年轻,还有很多的机会有待大家共同去探索、发觉。



以上内容来自郑宇博士的分享。




2 利用大数据改进医疗应急服务

让我们一起来梳理下在城市计算的各个层面中需要哪些典型的技术、案例及经典问题。在城市感知层面,通过 120 调度救护系统来看一个真实的案例。当真实的 120 的求救信号已有,就会知道什么时间有多少人呼叫救护车,进而可以对站点的位置进行重新布局。通过数据计算重新布置站点,使得救护车出发的时间缩短 30%。可以挽救更多人的生命。而站点里面到底放多少救护车这不是静态的过程,是一个调度的问题,智能调度能够使得运力提高,在不增加救护车数量的情况下,把运力再提高。




3 城市大数据

数据管理层面,我们很多的数据,第一个特点是时空大数据;第二,我们在做数据管理的时候会遇到时空算法;第三点,要把以前的云增强。数据虽然在城市里面有千百万种,但是根据结果来讲就是两种,一个是点数据,一个是网数据,根据这个数据关联的时间个空间属性,是否动态变化,还分成三列,一个是时间方面和空间方面都是静态的,一个是空间静态但是时间动态,另外一类就是实践和空间都静态。



说到大数据,便会提到云平台。现在任何一家公司的云都完美支持前面提到时空大数据和城市大数据。原因包括:第一、我们时空数据的格式数据结构不一样,数据结构对存储带来了更大的需求;第二、查询方法不一样,采用动态的查询。这种方法不同于以前的文本查询;第三、真正的大数据,需要多元数据融合,发现数据之间的关联关系。



4 寻找最具影响力的位置查询

举个贵阳市充电桩选址的例子,根据过去一年贵阳出租车的GPS轨迹,布置 5 个充电桩的摆放位置,放在哪儿能使车的总流量是最大化呢?这个组合非常多,但借助分布式平台加上时空索引的方法,只需要3秒钟,就能得到一轮的结果。而对于不符合条件的充电桩,根据行业专家的经验反馈把它拿掉,再让算法计算,再产生新的结果,这样形成了人和机器的交互,人的智能和机器的智能结合在一起,把数据科学和行业结合在一起。通过动态交互科室分析的方法,就需要后面强大的平台支撑,就需要数据和平台的结合。




5 基于移动数据的自行车道规划

再看一个共享单车的例子,近两年,共享单车出现,人们对于自行车的需求也重新回来了,但自行车道的规划显然跟不上骑行的需求。自行车道的规划容易吗?其实不然,它需要具备三个条件:第一、金钱和空间的限制;第二,最大限度的利用;第三,道路在局部要联通。摩拜给我们来了不光是体验需求,还带来了大量的自行车的骑行轨迹。根据这个轨迹数据,就可以知道政府决策如何修建自行车道,这就是人工智能算法如何自动根据数据来生成的自行车道的规划。



只是管理数据远远不够,还需要知识的提炼,这里面临四方面的挑战,第一、把针对图像、文本的机器学习算法转移到服务于时空大数据;第二、交通、空气、经济、社交媒体,如何融合这些数据,是一个难点;第三、机器学习和数据管理这两方面的知识要有机的融合,缺一不可;第四、把行业的知识和人带进来,形成闭环,这样的大数据应用才能落地。




6 赋予智能云上的许多应用程序

这是物理系统层面的问题,在这个层面还有机器学习层面,一个最基本的机器学习模块,而第二层面就针对时空数据专门设计了一些机器学习算法,把这些放在云上,这是以前没有的。并且我们有多元数据融合方法,把多元数据融合放在一起。




7 面临的挑战

时空数据有空间距离,有层次、时间以及趋势、周期,特别是周期和趋势。这是在以前的数据里所不具备的。周期性会打破时间邻近性的规则,以前我们在视频数据里面只要时间邻近性,没有周期性,而周期也不是静态的。


将城市分成均匀的网格,把城市大数据投在网格里,数每个网格里面有多少人进与出,这样转化成一个矩阵。如果有很多类似的时间序列,在每个时间点我们会对它的事件、天气的输入,我们就可以预测下一个时间点这个城市是什么样子。



8 基于阶段的数字融合

大数据不是单一数据,而是多元数据融合,融合之后才能发挥更加多的作用,这个大数据融合的能力就是制高点。到底怎么融合呢?就是三种大的方法,第一基于阶段性的方法;第二种方法,基于特征拼接的方法;第三是人气,人们出行的习惯来反映这个地域的价值。




9 利用大数据对房地产进行排列和聚类

关于房子的地段,通过数据的量化能提取很多特征,把红色的拼在一起,预测房屋的涨幅是多少。很多年前大家认为这就是数据融合。其实不然,数据和数据一定是有相关性,它应该成对,这样的话对我们预测准确率的提升是有帮助的。




10 为当城市空气遇见大数据

基于多视角的融合方法,国家一到空气不好的时候就发布预警,国家建了很多的空气质量监测站,每个图标就是一个站点,红色很差,绿色很好,不同站点之间差异非常大。空气质量受很多的复杂因素影响,这个因素在每个角落是不一样的,所以同一个城市,呼吸的空气是不一样的。


借助大数据人工智能的方法,基于两类数据,把整个城市里面一公里的数据时时算出来。基于两部分数据,利用机器学习的方法,来学习一个地方它的数据跟这个地方对应空气质量的关系,一旦模型选好后,这些数据就已经时时存在,不需要建任何新的基础设施。可以点地图的任何地方,即便这个地方没有建站点,我就告诉你这个空气质量是多少。




11 为当城市空气遇见大数据

再举一个例子,这和我们环境、交通、规划、能源都有相关性。谁能告诉我在过去一个小时里面,北京市路面上所有车的总油耗是多少?这些车烧了多少油,产生多少PM2.5排放量呢?政府可能都不知道。



我们能将计算出每个城市每一条路上过去10分钟每个车的油耗、流量、排放,这是基于一部分GPS、路网、天气,以多样融合的方法实现,这个系统也已经在贵阳落地。




12 迁移学习

我们一直有一种能力,当看到桌子,就知道哪个是椅子,但在计算深度学习的方法中,看一万张图片可能都不知道猫是什么样子,深度学习解决的是特征表达的问题。这个知识怎么能用到我们生活中来呢,解决城市大数据的问题。




13 许多城市缺乏数据

在某些地区,因为城市比较新,或者城市基础设施比较弱,数据库不全或者没有,导致地方数据缺失。怎么办呢?这使得很多的项目不能推广,所以很多智慧城市的项目不能复制,不能全国化。




14 城市间的知识转移

能不能把一个城市里面数据知识转移到另一个城市,帮助其他的城市来落地这个项目,把不同城市的知识性转移。但,不能简单的把北京的空气质量模型训练好后直接拿到上海去,肯定不行。那么,什么可以迁移?第一,数据和数据之间的关系可以迁移;第二,数据表征不一样,但是数据投向影像空间的时候是一样。




总结和思考


城市大数据需要哪些东西?第一、需要多方面知识,大数据、AI、云平台,以及行业知识;第二、需要平台,既要有模型、数据管理,也要有机器学习算法和可视化算法,才是个综合平台;第三、时空数据很不一样。最后一点,人工智能在时空数据领域非常年轻,还有很多的机会有待大家共同去探索、发觉。



以上内容来自郑宇博士的分享。


阅读更多

没有更多推荐了,返回首页