转自:https://blog.csdn.net/u012289407/article/details/46582585
题目描述:
输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果。如果是返回true,否则返回false。假设输入的数组的任意两个数字互不相同。
解题思路:
要明确两个概念:
1. 二叉搜索树的特点,就是如果有对任何一个非空结点,假如左子树存在,那么左子树的中任意一个结点都比该根结点小,假如右子树存在,那么右子树中的任何一个节点都比该根结点大。
2.二叉树的后序遍历,也就是 左→右→根 的遍历顺序。
然后根据一个具体的实例模拟一下过程:
例如输入数组{5、7、6、9、11、10、8}
因为是后序遍历,所以最后一个数字8一定是整棵树的根结点。所以其他数字为8的子结点,从前往后遍历数组,5,7,6都小于8,所以这三个数字应该组成了8的左子树,同理9、11、10组成了8的右子树。
又如输入数组{7、4、6、5},5是根结点,从前往后遍历数组,5应该是没有左子树,7、4、6组成了5的右子树,而4 < 5,所以,4不能在5的右子树中,相互矛盾,所以这不能是一个后序遍历序列。
以上这些是判断条件,而下面一步是利用递归来判断整棵树了。
代码如下:
public class VerifySequenceOfBSTTest {
public static boolean verifySequenceOfBST(int[] sequence, int start, int end){
if(sequence == null || start < 0 || end < 0){
return false;
}
int root = sequence[end];
int i = start;
for( ; i < end; i++){
if(sequence[i] > root){
break;
}
}
for(int j = i; j < end; j++){
if(sequence[j] < root){
return false;
}
}
boolean left = true;
if(i > start){
left = verifySequenceOfBST(sequence, start, i - 1);
}
boolean right = true;
if(i < end - 1){
right = verifySequenceOfBST(sequence, i , end - 1);
}
return (left && right);
}
public static void main(String[] args) {
int[] a = new int[]{5, 7, 6, 9, 11, 10, 8};
int[] b = new int[]{7, 4, 6, 5};
int[] c = new int[]{11, 10, 9, 8};
System.out.println(verifySequenceOfBST(a, 0, a.length - 1));
System.out.println(verifySequenceOfBST(b, 0, b.length - 1));
System.out.println(verifySequenceOfBST(c, 0, c.length - 1));
}
}