定义
字典树,英文名 trie。顾名思义,就是一个像字典一样的树。
引入
先放一张图:
可以发现,这棵字典树用边来代表字母,而从根结点到树上某一结点的路径就代表了一个字符串。举个例子, 表示的就是字符串 caa
。
trie 的结构非常好懂,我们用 表示结点 u的c字符指向的下一个结点,或着说是结点u 代表的字符串后面添加一个字符c 形成的字符串的结点。(c 的取值范围和字符集大小有关,不一定是 0~26。)
有时需要标记插入进 trie 的是哪些字符串,每次插入完成时在这个字符串所代表的节点处打上标记即可。
实现
放一个结构体封装的模板:
// C++ Version
struct trie {
int nex[100000][26], cnt;
bool exist[100000]; // 该结点结尾的字符串是否存在
void insert(char *s, int l) { // 插入字符串
int p = 0;
for (int i = 0; i < l; i++) {
int c = s[i] - 'a';
if (!nex[p][c]) nex[p][c] = ++cnt; // 如果没有,就添加结点
p = nex[p][c];
}
exist[p] = 1;
}
bool find(char *s, int l) { // 查找字符串
int p = 0;
for (int i = 0; i < l; i++) {
int c = s[i] - 'a';
if (!nex[p][c]) return 0;
p = nex[p][c];
}
return exist[p];
}
};
应用
检索字符串
字典树最基础的应用——查找一个字符串是否在“字典”中出现过。
对所有名字建 trie,再在 trie 中查询字符串是否存在、是否已经点过名,第一次点名时标记为点过名。
参考代码
#include <cstdio>
const int N = 500010;
char s[60];
int n, m, ch[N][26], tag[N], tot = 1;
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; ++i) {
scanf("%s", s + 1);
int u = 1;
for (int j = 1; s[j]; ++j) {
int c = s[j] - 'a';
if (!ch[u][c])
ch[u][c] =
++tot; // 如果这个节点的子节点中没有这个字符,添加上并将该字符的节点号记录为++tot
u = ch[u][c]; // 往更深一层搜索
}
tag[u] = 1; // 最后一个字符为节点 u 的名字未被访问到记录为 1
}
scanf("%d", &m);
while (m--) {
scanf("%s", s + 1);
int u = 1;
for (int j = 1; s[j]; ++j) {
int c = s[j] - 'a';
u = ch[u][c];
if (!u) break; // 不存在对应字符的出边说明名字不存在
}
if (tag[u] == 1) {
tag[u] = 2; // 最后一个字符为节点 u 的名字已经被访问
puts("OK");
} else if (tag[u] == 2) // 已经被访问,重复访问
puts("REPEAT");
else
puts("WRONG");
}
return 0;
}
维护异或极值
将数的二进制表示看做一个字符串,就可以建出字符集为 {0,1}的 trie 树。
参考代码
#include <algorithm>
#include <cstdio>
using namespace std;
const int N = 100010;
int head[N], nxt[N << 1], to[N << 1], weight[N << 1], cnt;
int n, dis[N], ch[N << 5][2], tot = 1, ans;
void insert(int x) {
for (int i = 30, u = 1; i >= 0; --i) {
int c = ((x >> i) & 1); // 二进制一位一位向下取
if (!ch[u][c]) ch[u][c] = ++tot;
u = ch[u][c];
}
}
void get(int x) {
int res = 0;
for (int i = 30, u = 1; i >= 0; --i) {
int c = ((x >> i) & 1);
if (ch[u][c ^ 1]) { // 如果能向和当前位不同的子树走,就向那边走
u = ch[u][c ^ 1];
res |= (1 << i);
} else
u = ch[u][c];
}
ans = max(ans, res); // 更新答案
}
void add(int u, int v, int w) { // 建边
nxt[++cnt] = head[u];
head[u] = cnt;
to[cnt] = v;
weight[cnt] = w;
}
void dfs(int u, int fa) {
insert(dis[u]);
get(dis[u]);
for (int i = head[u]; i; i = nxt[i]) { // 遍历子节点
int v = to[i];
if (v == fa) continue;
dis[v] = dis[u] ^ weight[i];
dfs(v, u);
}
}
int main() {
scanf("%d", &n);
for (int i = 1; i < n; ++i) {
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
add(u, v, w); // 双向边
add(v, u, w);
}
dfs(1, 0);
printf("%d", ans);
return 0;
}
维护异或和
01-trie 是指字符集为 {0,1}的 trie。01-trie 可以用来维护一些数字的异或和,支持修改(删除 + 重新插入),和全局加一(即:让其所维护所有数值递增 1
,本质上是一种特殊的修改操作)。
如果要维护异或和,需要按值从低位到高位建立 trie。
一个约定:文中说当前节点 往上 指当前节点到根这条路径,当前节点 往下 指当前结点的子树。
插入 & 删除
如果要维护异或和,我们 只需要 知道某一位上 0
和 1
个数的 奇偶性 即可,也就是对于数字 1
来说,当且仅当这一位上数字 1
的个数为奇数时,这一位上的数字才是 1
,请时刻记住这段文字:如果只是维护异或和,我们只需要知道某一位上 1
的数量即可,而不需要知道 trie 到底维护了哪些数字。
对于每一个节点,我们需要记录以下三个量:
ch[o][0/1]
指节点o
的两个儿子,ch[o][0]
指下一位是0
,同理ch[o][1]
指下一位是1
。w[o]
指节点o
到其父亲节点这条边上数值的数量(权值)。每插入一个数字x
,x
二进制拆分后在 trie 上 路径的权值都会+1
。xorv[o]
指以o
为根的子树维护的异或和。
具体维护结点的代码如下所示。
void maintain(int o) {
w[o] = xorv[o] = 0;
if (ch[o][0]) {
w[o] += w[ch[o][0]];
xorv[o] ^= xorv[ch[o][0]] << 1;
}
if (ch[o][1]) {
w[o] += w[ch[o][1]];
xorv[o] ^= (xorv[ch[o][1]] << 1) | (w[ch[o][1]] & 1);
}
// w[o] = w[o] & 1;
// 只需知道奇偶性即可,不需要具体的值。当然这句话删掉也可以,因为上文就只利用了他的奇偶性。
}
插入和删除的代码非常相似。
需要注意的地方就是:
-
这里的
MAXH
指 trie 的深度,也就是强制让每一个叶子节点到根的距离为MAXH
。对于一些比较小的值,可能有时候不需要建立这么深(例如:如果插入数字4
,分解成二进制后为100
,从根开始插入001
这三位即可),但是我们强制插入MAXH
位。这样做的目的是为了便于全局+1
时处理进位。例如:如果原数字是3
(11
),递增之后变成4
(100
),如果当初插入3
时只插入了2
位,那这里的进位就没了。 -
插入和删除,只需要修改叶子节点的
w[]
即可,在回溯的过程中一路维护即可。
实现
namespace trie {
const int MAXH = 21;
int ch[_ * (MAXH + 1)][2], w[_ * (MAXH + 1)], xorv[_ * (MAXH + 1)];
int tot = 0;
int mknode() {
++tot;
ch[tot][1] = ch[tot][0] = w[tot] = xorv[tot] = 0;
return tot;
}
void maintain(int o) {
w[o] = xorv[o] = 0;
if (ch[o][0]) {
w[o] += w[ch[o][0]];
xorv[o] ^= xorv[ch[o][0]] << 1;
}
if (ch[o][1]) {
w[o] += w[ch[o][1]];
xorv[o] ^= (xorv[ch[o][1]] << 1) | (w[ch[o][1]] & 1);
}
w[o] = w[o] & 1;
}
void insert(int &o, int x, int dp) {
if (!o) o = mknode();
if (dp > MAXH) return (void)(w[o]++);
insert(ch[o][x & 1], x >> 1, dp + 1);
maintain(o);
}
void erase(int o, int x, int dp) {
if (dp > 20) return (void)(w[o]--);
erase(ch[o][x & 1], x >> 1, dp + 1);
maintain(o);
}
} // namespace trie
01-trie 合并
指的是将上述的两个 01-trie 进行合并,同时合并维护的信息。
可能关于合并 trie 的文章比较少,其实合并 trie 和合并线段树的思路非常相似,可以搜索“合并线段树”来学习如何合并 trie。
其实合并 trie 非常简单,就是考虑一下我们有一个 int merge(int a, int b)
函数,这个函数传入两个 trie 树位于同一相对位置的结点编号,然后合并完成后返回合并完成的结点编号。
过程
考虑怎么实现?
分三种情况:
- 如果
a
没有这个位置上的结点,新合并的结点就是b
- 如果
b
没有这个位置上的结点,新合并的结点就是a
-
如果
a
,b
都存在,那就把b
的信息合并到a
上,新合并的结点就是a
,然后递归操作处理 a 的左右儿子。提示:如果需要的合并是将 a,b 合并到一棵新树上,这里可以新建结点,然后合并到这个新结点上,这里的代码实现仅仅是将 b 的信息合并到 a 上。
实现
int merge(int a, int b) {
if (!a) return b; // 如果 a 没有这个位置上的结点,返回 b
if (!b) return a; // 如果 b 没有这个位置上的结点,返回 a
/*
如果 `a`, `b` 都存在,
那就把 `b` 的信息合并到 `a` 上。
*/
w[a] = w[a] + w[b];
xorv[a] ^= xorv[b];
/* 不要使用 maintain(),
maintain() 是合并a的两个儿子的信息
而这里需要 a b 两个节点进行信息合并
*/
ch[a][0] = merge(ch[a][0], ch[b][0]);
ch[a][1] = merge(ch[a][1], ch[b][1]);
return a;
}
其实 trie 都可以合并,换句话说,trie 合并不仅仅限于 01-trie。