Intel Distiller工具包-量化实现3 本系列文章Intel Distiller工具包-量化实现1Intel Distiller工具包-量化实现2Intel Distiller工具包-量化实现3回顾上一篇文章中介绍了Distiller及Quantizer基类,基类定义了重要的变量,如replacement_factory(dict,用于记录待量化module对应的wrapper);此外定义了量化流程,包括 预处理(BN折叠,激活优化等)、量化模块替换、后处理 等主要步骤; 本文介绍继承自Quantizer的子类量化...
Intel Distiller工具包-量化实现2 本系列文章Intel Distiller工具包-量化实现1https://blog.csdn.net/cyz0202/article/details/125030673回顾上一篇文章中介绍了Distiller及Quantizer基类,基类定义了重要的变量,如replacement_factory(dict,用于记录待量化module对应的wrapper);此外定义了量化流程,包括 预处理(BN折叠,激活优化等)、量化模块替换、后处理 等主要步骤; 本文介绍继承自Quantizer的子类量化..
BMINF的后训练量化实现 BMINFBMINF是清华大学开发的大模型推理工具,目前主要针对该团队的CPM系列模型做推断优化。该工具实现了内存/显存调度优化,利用cupy/cuda实现了后训练量化 等功能,本文记录分析该工具的后训练量化实现。主要关注cupy操作cuda实现量化的部分,涉及量化的原理可能不会做详细介绍,需要读者查阅其他资料;实现代码分析1量化部分的入口代码主要是在 tools/migrate_xxx.py,这里以 tools/migrate_cpm2.py为例;main函数build_mo
Transformer relative position的一种实现方式 参考自 GitHub BMINF项目直接上代码class PositionBias(Layer): def __init__(self, num_buckets, num_heads, is_decoder): self.num_buckets = num_buckets self.is_decoder = is_decoder self.num_heads = num_heads self.embedding = Embedd.
spark学习 Spark2.4.5RDD的转换操作学习mapPartitions例子:给定rdd1 = sc.makeRDD(1 to 10, 4),请输出各partition的"|“拼接结果;=> rdd1.mapPartitions(x => Iterator(x.mkString(”|"))).collectnote:要注意Iterator的使用是为了满足partition的要求;...
空洞卷积+转置卷积+反卷积 1. 空洞卷积1.1 如上图所示,空洞卷积是为了增加感受野(pooling虽然能增加感受野,但是容易丢失原有信息);1.2 实现原理:图a为普通3*3卷积(注:该卷积也可视为空洞率=1的空洞卷积,见以下说明);图b是空洞率=2的空洞卷积,即向原有卷积核前中后都插入一个权重为0的格子;此时卷积核变为77,但是有值的格子还是只有原来的33;图c是空洞率=4的空洞卷积,情况如图b;1.3 空洞卷积的应用:如下是在语音里的应用(Dilation=2即空洞率为2)1.4 补充:pooling
nvidia混合精度训练原理 参考自 nvidia-mixed-precision-trainingMixed Precision Training背景:减少内存消耗、提高训练、推断速度基本思想:大部分相对不重要的计算使用FP16,少量重要的计算使用FP32实际实现主要考虑两大部分:哪些部分使用FP16针对FP16可能带来的性能衰退做相应优化,主要是添加 loss scale一个例子展示效果半精度格式IEEE754规定16bits半精度浮点数格式为:1 sign bit, 5 exponent bit.
label-bias-problem 参考自:label-bias-problem1label-bias-problem2B站白板推导MEMM-CRF现象描述该问题来自对局部转移概率的归一化;直观地想象状态S的向外转移分支较少时,各分支会得到更多的probability;状态S的向外转移分支虽多,但是其实真实数据中这些转移发生次数都比较少,因为归一化,S的转移概率分布也可能和其他状态的常见转移一样;上述两种现象针对的问题就是,本身从当前状态S向外转移 在数据中并不常见,但是由于S外转分支少,再加上做归一化,就会.
GCN理解 主要内容参考自该知乎高赞回答 @superbrother,加入个人理解,侵删;本文介绍GCN原理,不是科普入门,需要熟悉矩阵、高数、深度学习;对矩阵分解不熟悉的请先看最后的补充知识部分(注意不是从头讲解)背景介绍为什么研究GCN主要是有不规则图需要处理的场景,如社交网络等;处理拓扑图空间特征的两种方式具体分析1)图卷积理论图 拉普拉斯矩阵为什么使用L(拉普拉斯)矩阵L矩阵的谱分解:GCN的核心基于拉普拉斯矩阵的谱分解如[何从传统的傅里叶变换、卷积类比到.
linux-设置网络类型 内容来自itbaizhanNAT:网络地址转换模式Bridge:桥接/桥连模式区别:假设物理机U的局域网ip地址:192.168.1.5创建虚拟机V时(如下图图片示例),如果使用NAT网络类型,则V被分配的ip地址可能为192.168.203.5;V访问外网时,NAT技术会将V的ip地址转换成物理机U的公用IP地址,因此可以访问外网;NAT优点:NAT有点是节省ip,只要访问外网时进行一下转换即可;NAT缺点:V与物理机U的ip区别是 不在同一个网段,因此两者没法直接互相访问;桥连:.