[BZOJ2299] [HAOI2011]向量

博客给出一个向量拼接问题,即使用给定的向量组合能否拼出目标向量。介绍了输入输出格式和样例,给出题解,通过列方程组,利用两数之和与差奇偶性相同的特点,用扩展欧几里德求解并调整,最后判断奇偶性,还提及代码实现。

传送门

http://www.lydsy.com/JudgeOnline/problem.php?id=2299

题目描述

给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y)。

说明:这里的拼就是使得你选出的向量之和为(x,y)

输入

第一行数组组数t,(t<=50000)

接下来t行每行四个整数a,b,x,y (-2*109<=a,b,x,y<=2*109)

输出

t行每行为Y或者为N,分别表示可以拼出来,不能拼出来

样例输入
3
2 1 3 3
1 1 0 1
1 0 -2 3

样例输出
Y
N
Y

题解

其实就是(a,b),(a,−b),(b,a),(b,−a)(a,b),(a,−b),(b,a),(b,−a)四个,设分别用它们的次数为t1,t2,t3,t4t1,t2,t3,t4
然后列方程组
a(t1+t2)+b(t3+t4)=xa(t3−t4)+b(t1−t2)=y
a(t1+t2)+b(t3+t4)=xa(t3−t4)+b(t1−t2)=y

我们很容易发现两数之和和之差奇偶性是相同的
就用扩展欧几里德解出来然后调整再判奇偶性即可

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
using namespace std;
inline int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
int T;
long long a,b,x,y,d;
long long gcd(long long a,long long b) {return b==0?a:gcd(b,a%b);}
bool jud(long long x,long long y) {return x%d==0&&y%d==0;}
int main()
{
    T=read();
    while(T--)
    {
        a=read(),b=read(),x=read(),y=read();
        d=gcd(2*a,2*b);
        if( jud(x,y) || jud(x+a,y+b) || jud(x+b,y+a) || jud(x+a+b,y+a+b) ) puts("Y");
        else puts("N");
    }
    return 0;
}

若您觉得此篇博客写得不错,请别忘了关注我哦 >_<

内容概要:本文提出了一种基于融合鱼鹰算法和柯西变异的改进麻雀优化算法(OCSSA),用于优化变分模态分解(VMD)的参数,进而结合卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)构建OCSSA-VMD-CNN-BILSTM模型,实现对轴承故障的高【轴承故障诊断】基于融合鱼鹰和柯西变异的麻雀优化算法OCSSA-VMD-CNN-BILSTM轴承诊断研究【西储大学数据】(Matlab代码实现)精度诊断。研究采用西储大学公开的轴承故障数据集进行实验验证,通过优化VMD的模态数和惩罚因子,有效提升了信号分解的准确性与稳定性,随后利用CNN提取故障特征,BiLSTM捕捉时间序列的深层依赖关系,最终实现故障类型的智能识别。该方法在提升故障诊断精度与鲁棒性方面表现出优越性能。; 适合人群:具备一定信号处理、机器学习基础,从事机械故障诊断、智能运维、工业大数据分析等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①解决传统VMD参数依赖人工经验选取的问题,实现参数自适应优化;②提升复杂工况下滚动轴承早期故障的识别准确率;③为智能制造与预测性维护提供可靠的技术支持。; 阅读建议:建议读者结合Matlab代码实现过程,深入理解OCSSA优化机制、VMD信号分解流程以及CNN-BiLSTM网络架构的设计逻辑,重点关注参数优化与故障分类的联动关系,并可通过更换数据集进一步验证模型泛化能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值