Redis学习笔记之六:redis实战(redis与spring整合,分布式锁实现)

Redis与spring的整合

相关依赖jar包

spring把专门的数据操作独立封装在spring-data系列中,spring-data-redis是对Redis的封装

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

<dependency>

    <groupId>org.springframework.data</groupId>

    <artifactId>spring-data-redis</artifactId>

    <version>1.4.2.RELEASE</version>

</dependency>

 

<dependency>

    <groupId>redis.clients</groupId>

    <artifactId>jedis</artifactId>

    <version>2.6.2</version>

</dependency>

 

<dependency>

    <groupId>org.apache.commons</groupId>

    <artifactId>commons-pool2</artifactId>

    <version>2.4.2</version>

</dependency>

Spring 配置文件applicationContext.xml

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

<!--命令空间中加入下面这行-->

xmlns:p="http://www.springframework.org/schema/p"

 

<!-- redis连接池配置文件 -->

<context:property-placeholder location="classpath:redis.properties" /> 

 

<bean id="poolConfig" class="redis.clients.jedis.JedisPoolConfig"

    <property name="maxIdle" value="${redis.maxIdle}" /> 

    <property name="maxTotal" value="${redis.maxTotal}" /> 

    <property name="MaxWaitMillis" value="${redis.MaxWaitMillis}" /> 

    <property name="testOnBorrow" value="${redis.testOnBorrow}" /> 

</bean> 

   

<bean id="connectionFactory" class="org.springframework.data.    redis.connection.jedis.JedisConnectionFactory" 

    p:host-name="${redis.host}" p:port="${redis.port}"

    p:password="${redis.pass}"  p:pool-config-ref="poolConfig"/> 

   

<bean id="redisTemplate" class="org.springframework.data.    redis.core.RedisTemplate"

    <property name="connectionFactory"   ref="connectionFactory" /> 

</bean>

  

注意新版的maxTotal,MaxWaitMillis这两个字段与旧版的不同。

redis连接池配置文件redis.properties

1

2

3

4

5

6

7

8

redis.host=192.168.2.129

redis.port=6379 

redis.pass=redis129 

 

redis.maxIdle=300 

redis.maxTotal=600 

redis.MaxWaitMillis=1000 

redis.testOnBorrow=true

好了,配置完成,下面写上代码

 

测试代码

User

1

2

3

4

5

6

7

8

9

@Entity

@Table(name = "t_user")

public class User {

    //主键

    private String id;

    //用户名

    private String userName;

        //...省略get,set...

}

BaseRedisDao

1

2

3

4

5

6

7

@Repository

public abstract class BaseRedisDao<K,V> {

     

    @Autowired(required=true

    protected RedisTemplate<K, V> redisTemplate;

 

}

IUserDao 

1

2

3

4

5

6

7

8

9

10

11

public interface IUserDao {

     

    public boolean save(User user);

     

    public boolean update(User user);

 

    public boolean delete(String userIds);

     

    public User find(String userId);

     

}

UserDao 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

@Repository

public class UserDao extends BaseRedisDao<String, User> implements IUserDao {

     

    @Override

    public boolean save(final User user) {

        boolean res = redisTemplate.execute(new RedisCallback<Boolean>() {

            public Boolean doInRedis(RedisConnection connection) throws DataAccessException {

                RedisSerializer<String> serializer = redisTemplate.getStringSerializer();

                byte[] key = serializer.serialize(user.getId());

                byte[] value = serializer.serialize(user.getUserName());

                //set not exits

                return connection.setNX(key, value);

            }

        });

        return res;

    }

 

    @Override

    public boolean update(final User user) {

        boolean result = redisTemplate.execute(new RedisCallback<Boolean>() { 

            public Boolean doInRedis(RedisConnection connection) throws DataAccessException { 

                RedisSerializer<String> serializer = redisTemplate.getStringSerializer(); 

                byte[] key  = serializer.serialize(user.getId()); 

                byte[] name = serializer.serialize(user.getUserName()); 

                //set

                connection.set(key, name); 

                return true

            

        }); 

        return result;

    }

 

    @Override

    public User find(final String userId) {

        User result = redisTemplate.execute(new RedisCallback<User>() { 

            public User doInRedis(RedisConnection connection) throws DataAccessException { 

                RedisSerializer<String> serializer = redisTemplate.getStringSerializer(); 

                byte[] key = serializer.serialize(userId);

                //get

                byte[] value = connection.get(key); 

                if (value == null) { 

                    return null

                

                String name = serializer.deserialize(value);

                User resUser = new User();

                resUser.setId(userId);

                resUser.setUserName(name);

                return resUser; 

            

        }); 

        return result; 

    }

 

    @Override

    public boolean delete(final String userId) {

        boolean result = redisTemplate.execute(new RedisCallback<Boolean>() { 

            public Boolean doInRedis(RedisConnection connection) throws DataAccessException { 

                RedisSerializer<String> serializer = redisTemplate.getStringSerializer(); 

                byte[] key  = serializer.serialize(userId); 

                //delete

                connection.del(key);

                return true

            

        }); 

        return result;

    }

 

}

Test

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

@RunWith(SpringJUnit4ClassRunner.class)

@ContextConfiguration(locations = {"classpath*:applicationContext.xml"}) 

public class RedisTest extends AbstractJUnit4SpringContextTests { 

       

    @Autowired 

    private IUserDao userDao;

     

    @Test 

    public void testSaveUser() { 

        User user = new User(); 

        user.setId("402891815170e8de015170f6520b0000"); 

        user.setUserName("zhangsan"); 

        boolean res = userDao.save(user);

        Assert.assertTrue(res); 

    

     

    @Test 

    public void testGetUser() { 

        User user = new User(); 

        user = userDao.find("402891815170e8de015170f6520b0000");

        System.out.println(user.getId() + "-" + user.getUserName() ); 

    

     

    @Test 

    public void testUpdateUser() { 

        User user = new User(); 

        user.setId("402891815170e8de015170f6520b0000"); 

        user.setUserName("lisi"); 

        boolean res = userDao.update(user);

        Assert.assertTrue(res); 

    

     

    @Test 

    public void testDeleteUser() { 

        boolean res = userDao.delete("402891815170e8de015170f6520b0000");

        Assert.assertTrue(res); 

    

    

}

  

String类型的增删该查已完成,Hash,List,Set数据类型的操作就不举例了,和使用命令的方式差不多。如下

 

1

2

3

4

5

6

7

8

9

10

11

12

13

connection.hSetNX(key, field, value);

connection.hDel(key, fields);

connection.hGet(key, field);

 

connection.lPop(key);

connection.lPush(key, value);

connection.rPop(key);

connection.rPush(key, values);

 

connection.sAdd(key, values);

connection.sMembers(key);

connection.sDiff(keys);

connection.sPop(key);

  

回到顶部

整合可能遇到的问题

1.NoSuchMethodError

1

2

3

java.lang.NoSuchMethodError: org.springframework.core.serializer.support.DeserializingConverter.<init>(Ljava/lang/ClassLoader;)V

 

Caused by: java.lang.NoSuchMethodError: redis.clients.jedis.JedisShardInfo.setTimeout(I)V

  

类似找不到类,找不到方法的问题,当确定依赖的jar已经引入之后,此类问题多事spring-data-redis以及jedis版本问题,多换个版本试试,本文上面提到的版本可以使用。

1.No qualifying bean

1

No qualifying bean of type [org.springframework.data.redis.core.RedisTemplate] found for dependency

  

找不到bean,考虑applicationContext.xml中配置redisTemplate bean时实现类是否写错。例如,BaseRedisDao注入的是RedisTemplate类型的对象,applicationContext.xml中配置的实现类却是RedisTemplate的子类StringRedisTemplate,那肯定报错。整合好后,下面我们着重学习基于redis的分布式锁的实现。

基于redis实现的分布式锁

我们知道,在多线程环境中,锁是实现共享资源互斥访问的重要机制,以保证任何时刻只有一个线程在访问共享资源。锁的基本原理是:用一个状态值表示锁,对锁的占用和释放通过状态值来标识,因此基于redis实现的分布式锁主要依赖redis的SETNX命令和DEL命令,SETNX相当于上锁,DEL相当于释放锁,当然,在下面的具体实现中会更复杂些。之所以称为分布式锁,是因为客户端可以在redis集群环境中向集群中任一个可用Master节点请求上锁(即SETNX命令存储key到redis缓存中是随机的)。

 

现在相信你已经对在基于redis实现的分布式锁的基本概念有了解,需要注意的是,这个和前面文章提到的使用WATCH 命令对key值进行锁操作没有直接的关系。java中synchronized和Lock对象都能对共享资源进行加锁,下面我们将学习用java实现的redis分布式锁。

java中的锁技术

在分析java实现的redis分布式锁之前,我们先来回顾下java中的锁技术,为了直观的展示,我们采用“多个线程共享输出设备”来举例。

不加锁共享输出设备

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

public class LockTest {

    //不加锁

    static class Outputer {

        public void output(String name) {

            for(int i=0; i<name.length(); i++) {

                System.out.print(name.charAt(i));

            }

            System.out.println();

        }

    }

    public static void main(String[] args) {

        final Outputer output = new Outputer();

        //线程1打印zhangsan

        new Thread(new Runnable(){

            @Override

            public void run() {

                while(true) {

                     try{

                         Thread.sleep(1000);

                     }catch(InterruptedException e) {

                         e.printStackTrace();

                     }

                     output.output("zhangsan");

                }  

            }

        }).start();

         

        //线程2打印lingsi

        new Thread(new Runnable(){

            @Override

            public void run() {

                while(true) {

                     try{

                         Thread.sleep(1000);

                     }catch(InterruptedException e) {

                         e.printStackTrace();

                     }

                     output.output("lingsi");

                }

            }

        }).start();

         

        //线程3打印wangwu

        new Thread(new Runnable(){

            @Override

            public void run() {

                while(true) {

                     try{

                         Thread.sleep(1000);

                     }catch(InterruptedException e) {

                         e.printStackTrace();

                     }

                     output.output("huangwu");

                }

            }

        }).start();

    }

}

 

上面例子中,三个线程同时共享输出设备output,线程1需要打印zhangsan,线程2需要打印lingsi,线程3需要打印wangwu。在不加锁的情况,这三个线程会不会因为得不到输出设备output打架呢,我们来看看运行结果:

 

1

2

3

4

5

6

7

8

9

10

11

huangwu

zhangslingsi

an

huangwu

zlingsi

hangsan

huangwu

lzhangsan

ingsi

huangwu

lingsi

  

从运行结果可以看出,三个线程打架了,线程1没打印完zhangsan,线程2就来抢输出设备......可见,这不是我们想要的,我们想要的是线程之间能有序的工作,各个线程之间互斥的使用输出设备output。

使用java5中的Lock对输出设备加锁

现在我们对Outputer进行改进,给它加上锁,加锁之后每次只有一个线程能访问它。

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

//使用java5中的锁

static class Outputer{

    Lock lock = new ReentrantLock();

    public void output(String name) {

        //传统java加锁

        //synchronized (Outputer.class){

        lock.lock();

        try {

            for(int i=0; i<name.length(); i++) {

                System.out.print(name.charAt(i));

            }

            System.out.println();

        }finally{

            //任何情况下都有释放锁

            lock.unlock();

        }  

        //}

    }

}

  

看看加锁后的输出结果:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

zhangsan

lingsi

huangwu

zhangsan

lingsi

huangwu

zhangsan

lingsi

huangwu

zhangsan

lingsi

huangwu

zhangsan

lingsi

huangwu

......

  

从运行结果中可以看出,三个线程之间不打架了,线程之间的打印变得有序。有个这个基础,下面我们来学习基于Redis实现的分布式锁就更容易了。

Redis分布式锁

实现分析

从上面java锁的使用中可以看出,锁对象主要有lock与unlock方法,在lock与unlock方法之间的代码(临界区)能保证线程互斥访问。基于redis实现的Java分布式锁主要依赖redis的SETNX命令和DEL命令,SETNX相当于上锁(lock),DEL相当于释放锁(unlock)。我们只要实现Lock接口重写lock()和unlock()即可。但是这还不够,安全可靠的分布式锁应该满足满足下面三个条件:

l 互斥,不管任何时候,只有一个客户端能持有同一个锁。

l 不会死锁,最终一定会得到锁,即使持有锁的客户端对应的master节点宕掉。

l 容错,只要大多数Redis节点正常工作,客户端应该都能获取和释放锁。

那么什么情况下回不满足上面三个条件呢。多个线程(客户端)同时竞争锁可能会导致多个客户端同时拥有锁。比如,

(1)线程1在master节点拿到了锁(存入key)

(2)master节点在把线程1创建的key写入slave之前宕机了,此时集群中的节点已经没有锁(key)了,包括master节点的slaver节点

(3)slaver节点升级为master节点

(4)线程2向新的master节点发起锁(存入key)请求,很明显,能请求成功。

可见,线程1和线程2同时获得了锁。如果在更高并发的情况,可能会有更多线程(客户端)获取锁,这种情况就会导致上文所说的线程“打架”问题,线程之间的执行杂乱无章。

 

那什么情况下又会发生死锁的情况呢。如果拥有锁的线程(客户端)长时间的执行或者因为某种原因造成阻塞,就会导致锁无法释放(unlock没有调用),其它线程就不能获取锁而而产生无限期死锁的情况。其它线程在执行lock失败后即使粗暴的执行unlock删除key之后也不能正常释放锁,因为锁就只能由获得锁的线程释放,锁不能正常释放其它线程仍然获取不到锁。解决死锁的最好方式是设置锁的有效时间(redis的expire命令),不管是什么原因导致的死锁,有效时间过后,锁将会被自动释放。

 

为了保障容错功能,即只要有Redis节点正常工作,客户端应该都能获取和释放锁,我们必须用相同的key不断循环向Master节点请求锁,当请求时间超过设定的超时时间则放弃请求锁,这个可以防止一个客户端在某个宕掉的master节点上阻塞过长时间,如果一个master节点不可用了,应该尽快尝试下一个master节点。释放锁比较简单,因为只需要在所有节点都释放锁就行,不管之前有没有在该节点获取锁成功。

Redlock算法

根据上面的分析,官方提出了一种用Redis实现分布式锁的算法,这个算法称为RedLock。RedLock算法的主要流程如下:

 

RedLock算法主要流程

 

 

Java实现

 

结合上面的流程图,加上下面的代码解释,相信你一定能理解redis分布式锁的实现原理

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

public class RedisLock implements Lock{

 

    protected StringRedisTemplate redisStringTemplate;

 

    // 存储到redis中的锁标志

    private static final String LOCKED = "LOCKED";

 

    // 请求锁的超时时间(ms)

    private static final long TIME_OUT = 30000;

 

    // 锁的有效时间(s)

    public static final int EXPIRE = 60;

 

    // 锁标志对应的key;

    private String key;

 

    // state flag

    private volatile boolean isLocked = false;

 

    public RedisLock(String key) {

        this.key = key;

        @SuppressWarnings("resource")

        ApplicationContext  ctx =  new ClassPathXmlApplicationContext("classpath*:applicationContext.xml");

        redisStringTemplate = (StringRedisTemplate)ctx.getBean("redisStringTemplate");

    }

 

    @Override

    public void lock() {

        //系统当前时间,毫秒

        long nowTime = System.nanoTime();

        //请求锁超时时间,毫秒

        long timeout = TIME_OUT*1000000;

        final Random r = new Random();

        try {

            //不断循环向Master节点请求锁,当请求时间(System.nanoTime() - nano)超过设定的超时时间则放弃请求锁

            //这个可以防止一个客户端在某个宕掉的master节点上阻塞过长时间

            //如果一个master节点不可用了,应该尽快尝试下一个master节点

            while ((System.nanoTime() - nowTime) < timeout) {

                //将锁作为key存储到redis缓存中,存储成功则获得锁

                if (redisStringTemplate.getConnectionFactory().getConnection().setNX(key.getBytes(),

                        LOCKED.getBytes())) {

                    //设置锁的有效期,也是锁的自动释放时间,也是一个客户端在其他客户端能抢占锁之前可以执行任务的时间

                    //可以防止因异常情况无法释放锁而造成死锁情况的发生

                    redisStringTemplate.expire(key, EXPIRE, TimeUnit.SECONDS);

                    isLocked = true;

                    //上锁成功结束请求

                    break;

                }

                //获取锁失败时,应该在随机延时后进行重试,避免不同客户端同时重试导致谁都无法拿到锁的情况出现

                //睡眠3毫秒后继续请求锁

                Thread.sleep(3, r.nextInt(500));

            }

        catch (Exception e) {

            e.printStackTrace();

        }

    }

 

    @Override

    public void unlock() {

        //释放锁

        //不管请求锁是否成功,只要已经上锁,客户端都会进行释放锁的操作

        if (isLocked) {

            redisStringTemplate.delete(key);

        }

    }

 

    @Override

    public void lockInterruptibly() throws InterruptedException {

        // TODO Auto-generated method stub

         

    }

 

    @Override

    public boolean tryLock() {

        // TODO Auto-generated method stub

        return false;

    }

 

    @Override

    public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {

        // TODO Auto-generated method stub

        return false;

    }

 

    @Override

    public Condition newCondition() {

        // TODO Auto-generated method stub

        return null;

    }

}

 

好了,RedisLock已经实现,我们对Outputer使用RedisLock进行修改

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

/使用RedisLock

static class Outputer {

    //创建一个名为redisLock的RedisLock类型的锁

    RedisLock redisLock = new RedisLock("redisLock");

    public void output(String name) {

        //上锁

        redisLock.lock();

        try {

            for(int i=0; i<name.length(); i++) {

                System.out.print(name.charAt(i));

            }

            System.out.println();

        }finally{

            //任何情况下都要释放锁

            redisLock.unlock();

        }  

    }

}

  

看看使用RedisLock加锁后的的运行结果

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

lingsi

zhangsan

huangwu

lingsi

zhangsan

huangwu

lingsi

zhangsan

huangwu

lingsi

zhangsan

huangwu

lingsi

zhangsan

huangwu

......

  

可见,使用RedisLock加锁后线程之间不再“打架”,三个线程互斥的访问output。

问题

现在我无法论证RedLock算法在分布式、高并发环境下的可靠性,但从本例三个线程的运行结果看,RedLock算法确实保证了三个线程互斥的访问output(redis.maxIdle=300 redis.maxTotal=600,运行到Timeout waiting for idle object都没有出现线程“打架”的问题)。我认为RedLock算法仍有些问题没说清楚,比如,如何防止宕机时多个线程同时获得锁;RedLock算法在释放锁的处理上,不管线程是否获取锁成功,只要上了锁,就会到每个master节点上释放锁,这就会导致一个线程上的锁可能会被其他线程释放掉,这就和每个锁只能被获得锁的线程释放相互矛盾。这些有待后续进一步交流学习研究。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值