MySQL如何统计一个数据库所有表的数据量 最近在做统计想查找一个数据库里基本所有的表数据量,下面这篇文章主要给大家介绍了关于MySQL如何统计一个数据库所有表的数据量的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下
Thinkpad笔记本ubuntu风扇设置 If you own a ThinkPad, there's a piece of software called thinkfan that does exactly this. As the name obviously suggests, it is specifically made for ThinkPads (thinkpad_acpi).The thinkfan software is available in the standard ubuntu software repositori
ubuntu 20 安装docker sudo apt-get -y install docker.io11、查看docker版本sudo docker version or sudo docker -v12- auto using sudo to execute docker everytimesudo usermod -a -G docker $USERorsudo usermod -aG docker $USER
TZ时间格式转换 (UNIX_TIMESTAMP(regexp_replace(regexp_replace(eventTime,'T',' '),'Z',''))+8*3600)*1000TO_TIMESTAMP(FROM_UNIXTIME(cast(get_json_value(context,'$.send_time') as bigint)/1000,'yyyy-MM-dd HH:mm:ss'),'yyyy-MM-dd HH:mm:ss')
setStreamTimeCharacteristic env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);setStreamTimeCharacteristic 1.12版本已经是标记弃用了
Flink窗口全解析:三种时间窗口、窗口处理函数使用及案例 我们经常需要在一个时间窗口维度上对数据进行聚合,窗口是流处理应用中经常需要解决的问题。Flink的窗口算子为我们提供了方便易用的API,我们可以将数据流切分成一个个窗口,对窗口内的数据进行处理。本文将介绍如何在Flink上进行窗口的计算。一个Flink窗口应用的大致骨架结构如下所示:// Keyed Windowstream .keyBy(...) <- 按照一个Key进行分组 .window(...) &
GraphQL 作者:知乎用户链接:https://www.zhihu.com/question/264629587/answer/949588861来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。GraphQL 是一种针对 Graph(图状数据)进行查询特别有优势的 Query Language(查询语言),所以叫做 GraphQL。它跟 SQL 的关系是共用 QL 后缀,就好像「汉语」和「英语」共用后缀一样,但他们本质上是不同的语言。GraphQL 跟用作存储的 NoSQL .
Flink基础(二十):Table API 和 Flink SQL(五) Flink Table 和 SQL内置了很多SQL中支持的函数;如果有无法满足的需要,则可以实现用户自定义的函数(UDF)来解决。1 系统内置函数Flink Table API 和 SQL为用户提供了一组用于数据转换的内置函数。SQL中支持的很多函数,Table API和SQL都已经做了实现,其它还在快速开发扩展中。以下是一些典型函数的举例,全部的内置函数,可以参考官网介绍。比较函数SQL:value1 = value2value1 > value2Table API:
【翻译】Flink Table Api & SQL — 内置函数本文翻译自官网:Built-In Functions https://ci.apache.org/projects/flink/fl 【翻译】Flink Table Api & SQL — 内置函数本文翻译自官网:Built-In FunctionsApache Flink 1.9 Documentation: Built-In FunctionsFlink Table Api & SQL 翻译目录Flink Table API和SQL为用户提供了一组用于数据转换的内置函数。此页面简要概述了它们。如果尚不支持所需的功能,则可以实现用户定义的功能。如果您认为该功能足够通用,请为此打开Jira问题,并提供详细说..
Linux Shell 进制错误 - value too great for base (数值太大不可为算数进制的基) Linux Shell 编程进行数学运算时,如果有字符 '0' 打头的数 Bash 会当做八进制解释,而这经常会引起问题。比如我们用"08"参加运算,本意是当做10进制的8,实际却会运行报错:value too great for base (数值太大不可为算数进制的基)。通常情况下,直接写的数值不会以0打头,但如果是以前面命令的格式化输出为参数时,则往往不能控制。更危险的是,如果参与运算的以'0'打头数值达到了两位数或更多,且数值的每一位均在0-7之间,则 Shell 不会报错,但会输出错误的运算结果
Pulsar与Kafka的区别 在本系列的Pulsar和Kafka比较文章中,我将引导您完成我认为重要的几个领域,并且对于人们选择强大,高可用性,高性能的流式消息传递平台至关重要。消息传递模型(Messaging model)是用户在选择流式消息传递系统时应首先考虑的事情。消息传递模型应涵盖以下3个方面:Message consumption(消息消费):如何发送和消费消息 Message Acknowledgement(消息确认):如何确认消息 Message Retention(消息保留):消息要保留多久、出发消息删除的原因以
数据中台1 本文从数据中台的定义、核心能力、优点出发阐述企业数据中台建设的意义与必要性。一、数据中台定义数据中台是一套可持续“让企业的数据用起来”的机制,一种战略选择和组织形式,是依据企业特有的业务模式和组织架构,通过有形的产品和实施方法论支撑,构建一套持续不断把数据变成资产并服务于业务的机制。二、数据中台必须具备4个核心能力数据中台需要具备数据汇聚整合、数据提纯加工、数据服务可视化、数据价值变现4个核心能力,让企业员工、客户、伙伴能够方便地应用数据。企业数据中台必备4个能力2.1、汇聚
Solr学习总结(四)Solr查询参数 今天还是不会涉及到.Net和数据库操作,主要还是总结Solr 的查询参数,还是那句话,只有先明白了solr的基础内容和查询语法,后续学习solr 的C#和数据库操作,都是水到渠成的事。这里先列出solr查询所需要的参数 wiki 地址:http://wiki.apache.org/solr/FrontPage, 里面有各个参数详细的介绍。 一.基本查询 q 查询的关键字,此参数最为重要,例如,q=id:1,默认为q=*:*, fl 指定返回哪些字段,用逗号或空格分隔,注...
Solr查询参数 solr常用查询参数q:查询关键词。支持 AND,OR ,*,?。支持多字段查询,模糊匹配。fq:filter query,过虑查询。sort:排序规则。默认按score排序。start, rows:分页参数。start:开始的位置,rows:返回条数(page size)。fl: 用来指定文档结果中应返回的 Field 集。默认为 “*”,指所有的字段。用逗号分隔的列表。df:默认的查询字段。Raw Query Parameters:原始查询参数。wt:writer typ
分析函数(窗口函数) 1、分析函数的形式 分析函数带有一个开窗函数over(),包含三个分析子句:分组(partition by),排序(order by),窗口(rows),他们的使用形式如下:分析函数名(参数) over (partition by子句order by子句rows/range..子句)(注:若窗口函数内和sql语句末尾共存在两个order bya) order by字段两者一致:即sql语句中的order by子句里的内容和开窗函数over()中的order by子句里的内容一样...
flink如何正确分流 flink如何正确分流分流方式filter分流 split分流 (只能一次分流,分流后的流不能继续分流) side output分流 (推荐使用)场景flink-分流场景.png输入数据:{"key":"001","type":"1","data":"data1"}{"key":"001","type":"11","data":"data11"}{"key...
Flink BroadcastStream 假设存在这样一种场景,需要实时对运行在我们集群上的程序进行日志监控。但是程序的监控规则经常变更。这个时候就需要我们在处理各程序日志数据的时候要实时和当前程序的监控规则进行匹配判断,而且监控规则的变更要实时的被我们处理逻辑感知到。这个时候就可以使用广播状态,将程序的日志数据看做是一个流ActionStream,监控规则数据也看做是一个流RuleStream,将RuleStream流中数据下发到A...
基于Flink和规则引擎的实时风控解决方案 案例与解决方案汇总页: 阿里云实时计算产品案例&解决方案汇总对一个互联网产品来说,典型的风控场景包括:注册风控、登陆风控、交易风控、活动风控等,而风控的最佳效果是防患于未然,所以事前事中和事后三种实现方案中,又以事前预警和事中控制最好。这要求风控系统一定要有实时性。本文就介绍一种实时风控解决方案。1.总体架构风控是业务场景的产物,风控系统直接服务于业务系统,与之相关...