学习:GloVe模型

模型目标:进行词的向量化表示,使得向量之间尽可能多地蕴含语义和语法的信息

  • 输入:语料库
  • 输出:词向量

方法概述:首先基于语料库构建词的共现矩阵,然后基于共现矩阵和GloVe模型学习词向量。
在这里插入图片描述

统计共现矩阵

设共现矩阵为X,其元素为 X i , j X_{i,j} Xi,j
X i , j X_{i,j} Xi,j的意义为:在整个语料库中,单词i和单词j共同出现在一个窗口中的次数
举个栗子:
设有语料库:

i love you but you love him i am sad

这个小小的语料库只有1个句子,涉及到7个单词:i、love、you、but、him、am、sad。
如果我们采用一个窗口宽度为5(左右长度都为2)的统计窗口,那么就有以下窗口内容:
在这里插入图片描述
窗口0、1长度小于5是因为中心词左侧内容少于2个,同理窗口8、9长度也小于5。
以窗口5为例说明如何构造共现矩阵:
中心词为love,语境词为but、you、him、i;则执行:
在这里插入图片描述
使用窗口将整个语料库遍历一遍,即可得到共现矩阵X。

使用GloVe模型训练词向量

模型公式

先看模型,代价函数长这个样子:
在这里插入图片描述
v i v_i vi v j v_j vj是单词i和单词j的词向量, b i b_i bi b j b_j bj是两个标量(作者定义的偏差项),f是权重函数(具体函数公式及功能下一节介绍),N是词汇表的大小(共现矩阵维度为N∗N)。
可以看到,GloVe模型没有使用神经网络的方法

模型怎么来的

那么作者为什么这么构造模型呢?首先定义几个符号:
在这里插入图片描述
其实就是矩阵单词i那一行的和;
在这里插入图片描述
条件概率,表示单词k出现在单词i语境中的概率;
在这里插入图片描述
两个条件概率的比率。
作者的灵感是这样的:
作者发现, r a t i o i , j , k ratio_{i,j,k} ratioi,j,k这个指标是有规律的,规律统计在下表:
在这里插入图片描述
很简单的规律,但是有用。

思想:假设我们已经得到了词向量,如果我们用词向量 v i v_i vi v j v_j vj v k v_k vk通过某种函数计算 r a t i o i , j , k ratio_{i,j,k} ratioi,j,k,能够同样得到这样的规律的话,就意味着我们词向量与共现矩阵具有很好的一致性,也就说明我们的词向量中蕴含了共现矩阵中所蕴含的信息

设用词向量 v i v_i vi v j v_j vj v k v_k vk计算 r a t i o i , j , k ratio_{i,j,k} ratioi,j,k的函数为 g ( v i , v j , v k ) g(v_i,v_j,v_k) g(vi,vj,vk)(我们先不去管具体的函数形式),那么应该有:
在这里插入图片描述
即:
在这里插入图片描述
即二者应该尽可能地接近;
很容易想到用二者的差方来作为代价函数:
在这里插入图片描述
但是仔细一看,模型中包含3个单词,这就意味着要在N∗N∗N的复杂度上进行计算,太复杂了,最好能再简单点。
现在我们来仔细思考 g ( v i , v j , v k ) g(v_i,v_j,v_k) g(vi,vj,vk),或许它能帮上忙;

作者的脑洞是这样的:

  • 要考虑单词i和单词j之间的关系,那 g ( v i , v j , v k ) g(v_i,v_j,v_k) g(vi,vj,vk)中大概要有这么一项吧: v i − v j v_i−v_j vivj;嗯,合理,在线性空间中考察两个向量的相似性,不失线性地考察,那么 v i − v j v_i−v_j vivj大概是个合理的选择;
  • r a t i o i , j , k ratio_{i,j,k} ratioi,j,k是个标量,那么 g ( v i , v j , v k ) g(v_i,v_j,v_k) g(vi,vj,vk)最后应该是个标量啊,虽然其输入都是向量,那內积应该是合理的选择,于是应该有这么一项吧: ( v i − v j ) T v k (v_i−v_j)^Tv_k (vivj)Tvk
  • 然后作者又往 ( v i − v j ) T v k (v_i−v_j)^Tv_k (vivj)Tvk的外面套了一层指数运算exp(),得到最终的 g ( v i , v j , v k ) g(v_i,v_j,v_k) g(vi,vj,vk)=exp( ( v i − v j ) T v k (v_i−v_j)^Tv_k (vivj)Tvk);
    最关键的第3步,为什么套了一层exp()?

套上之后,我们的目标是让以下公式尽可能地成立:
在这里插入图片描述
即:
在这里插入图片描述
即:
在这里插入图片描述
即:
在这里插入图片描述
然后就发现找到简化方法了:只需要让上式分子对应相等,分母对应相等,即:
在这里插入图片描述
然而分子分母形式相同,就可以把两者统一考虑了,即:
在这里插入图片描述
本来我们追求:
在这里插入图片描述
现在只需要追求:
在这里插入图片描述
两边取个对数:
在这里插入图片描述
那么代价函数就可以简化为:
在这里插入图片描述
现在只需要在N∗N的复杂度上进行计算,而不是N∗N∗N,现在关于为什么第3步中,外面套一层exp()就清楚了,正是因为套了一层exp(),才使得差形式变成商形式,进而等式两边分子分母对应相等,进而简化模型。

然而,出了点问题。
仔细看这两个式子:
在这里插入图片描述
l o g ( P i , j ) log(P_{i,j}) log(Pi,j)不等于 l o g ( P j , i ) log(P_{j,i}) log(Pj,i)但是 v i T v j v_i^Tv_j viTvj等于 v j T v i v_j^Tv_i vjTvi;即等式左侧不具有对称性,但是右侧具有对称性。

数学上出了问题。
补救一下好了。
现将代价函数中的条件概率展开:
在这里插入图片描述
即为:
在这里插入图片描述
将其变为:
在这里插入图片描述
即添了一个偏差项 b j b_j bj,并将 l o g ( X i ) log(X_i) log(Xi)吸收到偏差项 b i b_i bi中。
于是代价函数就变成了:
在这里插入图片描述
具体权重函数应该是怎么样的呢?
首先应该是非减的,其次当词频过高时,权重不应过分增大,作者通过实验确定权重函数为:
在这里插入图片描述
到此,整个模型就介绍完了。

说明

复制链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值