Traceback包【持续更新】 traceback 是 Python 标准库中的一个模块,它提供了一组用于提取、格式化和打印程序执行过程中的堆栈跟踪信息的工具。当程序发生异常且未被捕获时,Python 会自动生成一个堆栈跟踪,显示出错的位置和调用栈。这有助于开发者理解和调试程序中出现的问题。
nohup命令【持续更新】 在Linux中,nohup命令是一个非常实用的工具,它允许用户在退出终端或挂断连接后,继续运行指定的命令或脚本。nohup是“no hang up”(不挂断)的缩写,其主要功能是在用户退出终端后,确保命令或脚本在后台持续运行。这对于执行长时间的任务或需要保持持续运行的服务非常有用。
pydantic详解【持续更新】 定义一个 Address 模型,表示地址信息city: str# 定义一个 User 模型,包含基本用户信息和地址id: intname: straddress: Address # 使用 Address 类型作为 User 的一个字段# 定义一个 Company 模型,包含公司信息和员工列表(每个员工是一个 User 实例)name: stremployees: list[User] # User 列表作为 Company 的一个字段# 创建 Address 实例。
python依赖包冲突 使用Anaconda来创建conda环境是解决Python项目依赖包冲突的一种非常有效的方法。Anaconda是一个流行的Python数据科学和机器学习平台,它提供了conda包管理器和一系列预安装的科学计算包。
inspect模块详解【持续更新】 inspect是Python标准库中的一个模块,提供了一些有用的函数,用于获取有关Python对象(如函数、类、模块等)的信息。使用inspect模块可以轻松地在Python中编写反射程序。
RAGAS评估及指标解析 现如今,LLM(大型语言模型)已跃升为前沿的AI技术,但在实际应用中仍面临着诸多挑战。其中,LLM的幻觉问题尤为棘手,极大地制约了其应用效果的发挥。为此,我们提出了运用RAG(检索增强型生成模型)进行上下文提示,以期有效解决这一幻觉问题。那么,RAG的应用效果究竟如何呢?为此,开源的Ragas包为我们提供了针对RAG的评估方法与指标,帮助我们全面评估其性能,从而更好地优化和拓展LLM的应用领域。RAGAS具体的使用方法在文档中不做展示,文档仅讨论RAGAS评估指标。
【有手就行】使用appbuilder打造你自己的贴吧对话机器人 这是这几天百度贴吧抗压背锅吧的聊天智能机器人——徐皇后近期,贴吧上的AI对话机器人备受欢迎,热度极高。那么如何构建我们自己的AI对话机器人呢?那么我今天就拿我们LPL现在的当红选手jackeylove来举个例子。
【有手就行】打造智能成语接龙游戏机器人,寓教于乐新体验! 想要拥有一款既能提升语言能力又极富娱乐性的智能伙伴吗?来试试我们的智能成语接龙游戏机器人吧!它结合了先进的人工智能技术与传统的成语接龙游戏,让你在轻松愉快的氛围中,感受中华语言的博大精深。
opentelemetry trace 异步工具是使用零个或多个回调创建的,这些回调将在指标收集期间调用。注意:这里的两个span不存在父子关系,span-1和span-2是两个独立的span,“span-2”中的链接在因果上与“span-1”相关联,运行do_work函数可以创建一个span,并跟踪do_work函数中发生的所有事件,将span传递到tracer中。当您在跟踪可视化工具中查看跨度时,child将作为 下的嵌套跨度进行跟踪parent,形成相应的父子id对应关系。可以使用零个或多个将其因果性链接到另一个跨度的跨度链接来创建跨度。
Linux常用命令 比如/usr/bin目录下存放了很多用户安装的软件。在Linux系统中,每个用户都有一个自己的家目录,这个目录一般存放着用户的个人文件和配置。这是二进制(binary)的缩写,存放了一些最基本的系统命令,这些命令可以被所有用户使用。与/bin类似,不过这里存放的是系统管理员使用的一些系统命令,例如ifconfig和shutdown。这个目录存放的是经常变化的文件,比如日志文件、邮件、缓存文件等。这个目录存放了系统的库文件,这些库文件是软件运行所必需的。这个目录是用来存放用户安装的额外软件的。
Git常用命令 这个命令用于查看当前工作目录的状态,包括已修改的文件、暂存区的文件以及未跟踪的文件等。每次提交都会创建一个新的版本,你可以为提交添加一条简短的描述,以便其他开发者和你自己更容易地理解这个提交所做的更改。--mixed 选项(默认选项)会将 HEAD 移动到指定的提交,并且将暂存区重置为该提交,但保留工作目录中的更改。这个命令用于查看提交历史,它会列出当前分支的所有提交记录,包括提交的作者、提交时间、提交信息等。--soft 选项会将 HEAD 移动到指定的提交,但保留暂存区和工作目录中的更改。
对本地部署的ChatGLM模型进行API调用 ChatGLM作为一个小参数模型,给予了我们在本地部署LLM的条件,接下来我将展示如何使用python对本地部署的ChatGLM模型进行API调用。对于如何部署本地ChatGLM模型我们可以访问。接下来我展示一个数据分析的例子代码。接下来运行就没有问题了。