【poj2279】Mr. Young's Picture Permutations dp

Description

Mr. Young wishes to take a picture of his class. The students will stand in rows with each row no longer than the row behind it and the left ends of the rows aligned. For instance, 12 students could be arranged in rows (from back to front) of 5, 3, 3 and 1 students.
X X X X X

X X X

X X X

X

In addition, Mr. Young wants the students in each row arranged so that heights decrease from left to right. Also, student heights should decrease from the back to the front. Thinking about it, Mr. Young sees that for the 12-student example, there are at least two ways to arrange the students (with 1 as the tallest etc.):
1 2 3 4 5 1 5 8 11 12

6 7 8 2 6 9

9 10 11 3 7 10

12 4

Mr. Young wonders how many different arrangements of the students there might be for a given arrangement of rows. He tries counting by hand starting with rows of 3, 2 and 1 and counts 16 arrangements:
123 123 124 124 125 125 126 126 134 134 135 135 136 136 145 146

45 46 35 36 34 36 34 35 25 26 24 26 24 25 26 25

6 5 6 5 6 4 5 4 6 5 6 4 5 4 3 3

Mr. Young sees that counting by hand is not going to be very effective for any reasonable number of students so he asks you to help out by writing a computer program to determine the number of different arrangements of students for a given set of rows.
Input

The input for each problem instance will consist of two lines. The first line gives the number of rows, k, as a decimal integer. The second line contains the lengths of the rows from back to front (n1, n2,…, nk) as decimal integers separated by a single space. The problem set ends with a line with a row count of 0. There will never be more than 5 rows and the total number of students, N, (sum of the row lengths) will be at most 30.
Output

The output for each problem instance shall be the number of arrangements of the N students into the given rows so that the heights decrease along each row from left to right and along each column from back to front as a decimal integer. (Assume all heights are distinct.) The result of each problem instance should be on a separate line. The input data will be chosen so that the result will always fit in an unsigned 32 bit integer.
Sample Input

1
30
5
1 1 1 1 1
3
3 2 1
4
5 3 3 1
5
6 5 4 3 2
2
15 15
0
Sample Output

1
1
16
4158
141892608
9694845

题解

很烦的是这题dp会mle,但我还是把代码放上来吧qwq
我们将每个学生按从高到低的顺序进行插入,因为存在单调性所以只需要记录人数即可,不需要详细记录我每行放了什么人。
每次插入得满足
1 此行没有超过限制的ai
2 此行人数小于上一行人数 只有这样,插入的话才能保证此学生比上一行同一个位置的学生矮
f[i][j][k][p][q]的五维数组表示一下每一行即可。

代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cctype>
using namespace std;
int f[31][31][31][31][31],lim[6];
int n;
inline int read()
{
    int ret=0;char ch=getchar();
    for (;!isdigit(ch);ch=getchar());
    for (;isdigit(ch);ch=getchar()) ret=ret*10+ch-'0';
    return ret;
}
int main()
{
    for (n=read();n;n=read())
    {
        memset(f,0,sizeof(f));
        memset(lim,0,sizeof(lim));
        for (int i=1;i<=n;i++) lim[i]=read();
        f[0][0][0][0][0]=1;
        for (int i=0;i<=lim[1];i++)
            for (int j=0;j<=lim[2];j++)
                for (int k=0;k<=lim[3];k++)
                    for (int p=0;p<=lim[4];p++)
                        for (int q=0;q<=lim[5];q++)
                        {
                            if (i+1<=lim[1]) f[i+1][j][k][p][q]+=f[i][j][k][p][q];
                            if (j+1<=lim[2]&&j<i) f[i][j+1][k][p][q]+=f[i][j][k][p][q];
                            if (k+1<=lim[3]&&k<i&&k<j) f[i][j][k+1][p][q]+=f[i][j][k][p][q];
                            if (p+1<=lim[4]&&p<i&&p<j&&p<k) f[i][j][k][p+1][q]+=f[i][j][k][p][q];
                            if (q+1<=lim[5]&&q<i&&q<j&&q<k&&q<p) f[i][j][k][p][q+1]+=f[i][j][k][p][q];    
                        }
        printf("%d\n",f[lim[1]][lim[2]][lim[3]][lim[4]][lim[5]]);
    }

    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Preface v Chapter 0. Introduction 1 x0.1. Linear partial di erential equations 1 Chapter 1. A rst look at Banach and Hilbert spaces 5 x1.1. Warm up: Metric and topological spaces 5 x1.2. The Banach space of continuous functions 14 x1.3. The geometry of Hilbert spaces 19 x1.4. Completeness 24 x1.5. Bounded operators 25 Chapter 2. Hilbert spaces 29 x2.1. Orthonormal bases 29 x2.2. The projection theorem and the Riesz lemma 34 x2.3. Operators de ned via forms 35 x2.4. Orthogonal sums and tensor products 37 Chapter 3. Compact operators 41 x3.1. Compact operators 41 x3.2. The spectral theorem for compact symmetric operators 43 x3.3. Applications to Sturm{Liouville operators 46 x3.4. Fredholm theory for compact operators 49 Chapter 4. Almost everything about Lebesgue integration 55 x4.1. Borel measures in a nut shell 55 x4.2. Measurable functions 64 x4.3. Integration | Sum me up Henri 66 x4.4. Product measures 70 Chapter 5. The Lebesgue spaces Lp 75 x5.1. Functions almost everywhere 75 x5.2. Jensen  Holder  Minkowski 77 x5.3. Nothing missing in Lp 80 x5.4. Integral operators 83 Chapter 6. The main theorems about Banach spaces 87 x6.1. The Baire theorem and its consequences 87 x6.2. The Hahn{Banach theorem and its consequences 91 x6.3. Weak convergence 97 Chapter 7. The dual of Lp 103 x7.1. Decomposition of measures 103 x7.2. Complex measures 106 x7.3. The dual of Lp, p < 1 109 x7.4. The dual of L1 and the Riesz representation theorem 110 Chapter 8. Bounded linear operators 115 x8.1. Banach algebras 115 x8.2. The C algebra of operators and the spectral theorem 120 x8.3. The Stone{Weierstra theorem 124 Appendix A. Zorn's lemma 127 Bibliography 129 Glossary of notation 131 Index 133

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值