[Leedcode][第215题][JAVA][数组中的第K个最大元素][快排][优先队列]

239 篇文章 1 订阅
【问题描述】[中等]
在未排序的数组中找到第 k 个最大的元素。请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。

示例 1:

输入: [3,2,1,5,6,4] 和 k = 2
输出: 5
示例 2:

输入: [3,2,3,1,2,4,5,5,6] 和 k = 4
输出: 4
说明:

你可以假设 k 总是有效的,且 1 ≤ k ≤ 数组的长度。

【解答思路】
1. 暴力解法(快排)

在这里插入图片描述
时间复杂度:O(NlogN) 空间复杂度:O(1)

import java.util.Arrays;

public class Solution {

    public int findKthLargest(int[] nums, int k) {
        int len = nums.length;
        Arrays.sort(nums);
        return nums[len - k];
    }
}




2. 借助 partition 操作定位到最终排定以后索引为 len - k 的那个元素(特别注意:随机化切分元素)

在这里插入图片描述
时间复杂度:O(N) 空间复杂度:O(1)
在这里插入图片描述

public class Solution {

    public int findKthLargest(int[] nums, int k) {
        int len = nums.length;
        int left = 0;
        int right = len - 1;

        // 转换一下,第 k 大元素的索引是 len - k
        int target = len - k;

        while (true) {
            int index = partition(nums, left, right);
            if (index == target) {
                return nums[index];
            } else if (index < target) {
                left = index + 1;
            } else {
                right = index - 1;
            }
        }
    }

    /**
     * 在数组 nums 的子区间 [left, right] 执行 partition 操作,返回 nums[left] 排序以后应该在的位置
     * 在遍历过程中保持循环不变量的语义
     * 1、[left + 1, j] < nums[left]
     * 2、(j, i] >= nums[left]
     *
     * @param nums
     * @param left
     * @param right
     * @return
     */
    public int partition(int[] nums, int left, int right) {
        int pivot = nums[left];
        int j = left;
        for (int i = left + 1; i <= right; i++) {
            if (nums[i] < pivot) {
                // 小于 pivot 的元素都被交换到前面
                j++;
                swap(nums, j, i);
            }
        }
        // 在之前遍历的过程中,满足 [left + 1, j] < pivot,并且 (j, i] >= pivot
        swap(nums, j, left);
        // 交换以后 [left, j - 1] < pivot, nums[j] = pivot, [j + 1, right] >= pivot
        return j;
    }

    private void swap(int[] nums, int index1, int index2) {
        int temp = nums[index1];
        nums[index1] = nums[index2];
        nums[index2] = temp;
    }
}


在这里插入图片描述

import java.util.Random;

public class Solution {

    private static Random random = new Random(System.currentTimeMillis());

    public int findKthLargest(int[] nums, int k) {
        int len = nums.length;
        int target = len - k;
        int left = 0;
        int right = len - 1;
        while (true) {
            int index = partition(nums, left, right);
            if (index < target) {
                left = index + 1;
            } else if (index > target) {
                right = index - 1;
            } else {
                return nums[index];
            }
        }
    }

    // 在区间 [left, right] 这个区间执行 partition 操作

    private int partition(int[] nums, int left, int right) {
        // 在区间随机选择一个元素作为标定点
        if (right > left) {
            int randomIndex = left + 1 + random.nextInt(right - left);
            swap(nums, left, randomIndex);
        }

        int pivot = nums[left];
        int j = left;
        for (int i = left + 1; i <= right; i++) {
            if (nums[i] < pivot) {
                j++;
                swap(nums, j, i);
            }
        }
        swap(nums, left, j);
        return j;
    }

    private void swap(int[] nums, int index1, int index2) {
        int temp = nums[index1];
        nums[index1] = nums[index2];
        nums[index2] = temp;
    }
} 


在这里插入图片描述

import java.util.Random;

public class Solution {

    private static Random random = new Random(System.currentTimeMillis());

    public int findKthLargest(int[] nums, int k) {
        int len = nums.length;
        int left = 0;
        int right = len - 1;

        // 转换一下,第 k 大元素的索引是 len - k
        int target = len - k;

        while (true) {
            int index = partition(nums, left, right);
            if (index == target) {
                return nums[index];
            } else if (index < target) {
                left = index + 1;
            } else {
                right = index - 1;
            }
        }
    }

    public int partition(int[] nums, int left, int right) {
        // 在区间随机选择一个元素作为标定点
        if (right > left) {
            int randomIndex = left + 1 + random.nextInt(right - left);
            swap(nums, left, randomIndex);
        }

        int pivot = nums[left];

        // 将等于 pivot 的元素分散到两边
        // [left, lt) <= pivot
        // (rt, right] >= pivot

        int lt = left + 1;
        int rt = right;

        while (true) {
            while (lt <= rt && nums[lt] < pivot) {
                lt++;
            }
            while (lt <= rt && nums[rt] > pivot) {
                rt--;
            }

            if (lt > rt) {
                break;
            }
            swap(nums, lt, rt);
            lt++;
            rt--;
        }

        swap(nums, left, rt);
        return rt;
    }

    private void swap(int[] nums, int index1, int index2) {
        int temp = nums[index1];
        nums[index1] = nums[index2];
        nums[index2] = temp;
    }
}


3. 优先队列

在这里插入图片描述

import java.util.PriorityQueue;

public class Solution {

    public int findKthLargest(int[] nums, int k) {
        int len = nums.length;
        // 使用一个含有 len 个元素的最小堆,默认是最小堆,可以不写 lambda 表达式:(a, b) -> a - b
        PriorityQueue<Integer> minHeap = new PriorityQueue<>(len, (a, b) -> a - b);
        for (int i = 0; i < len; i++) {
            minHeap.add(nums[i]);
        }
        for (int i = 0; i < len - k; i++) {
            minHeap.poll();
        }
        return minHeap.peek();
    }
}

import java.util.PriorityQueue;

public class Solution {

    public int findKthLargest(int[] nums, int k) {
        int len = nums.length;
        // 使用一个含有 len 个元素的最大堆,lambda 表达式应写成:(a, b) -> b - a
        PriorityQueue<Integer> maxHeap = new PriorityQueue<>(len, (a, b) -> b - a);
        for (int i = 0; i < len; i++) {
            maxHeap.add(nums[i]);
        }
        for (int i = 0; i < k - 1; i++) {
            maxHeap.poll();
        }
        return maxHeap.peek();
    }
}

在这里插入图片描述

import java.util.PriorityQueue;

public class Solution {

    public int findKthLargest(int[] nums, int k) {
        int len = nums.length;
        // 使用一个含有 k 个元素的最小堆
        PriorityQueue<Integer> minHeap = new PriorityQueue<>(k, (a, b) -> a - b);
        for (int i = 0; i < k; i++) {
            minHeap.add(nums[i]);
        }
        for (int i = k; i < len; i++) {
            // 看一眼,不拿出,因为有可能没有必要替换
            Integer topEle = minHeap.peek();
            // 只要当前遍历的元素比堆顶元素大,堆顶弹出,遍历的元素进去
            if (nums[i] > topEle) {
                minHeap.poll();
                minHeap.add(nums[i]);
            }
        }
        return minHeap.peek();
    }
}


在这里插入图片描述

import java.util.PriorityQueue;

public class Solution {

    public int findKthLargest(int[] nums, int k) {
        int len = nums.length;
        // 最小堆
        PriorityQueue<Integer> priorityQueue = new PriorityQueue<>(k + 1, (a, b) -> (a - b));
        for (int i = 0; i < k; i++) {
            priorityQueue.add(nums[i]);
        }
        for (int i = k; i < len; i++) {
            priorityQueue.add(nums[i]);
            priorityQueue.poll();
        }
        return priorityQueue.peek();
    }
}


在这里插入图片描述

import java.util.PriorityQueue;

public class Solution {

    // 根据 k 的不同,选最大堆和最小堆,目的是让堆中的元素更小
    // 思路 1:k 要是更靠近 0 的话,此时 k 是一个较大的数,用最大堆
    // 例如在一个有 6 个元素的数组里找第 5 大的元素
    // 思路 2:k 要是更靠近 len 的话,用最小堆

    // 所以分界点就是 k = len - k

    public int findKthLargest(int[] nums, int k) {
        int len = nums.length;
        if (k <= len - k) {
            // System.out.println("使用最小堆");
            // 特例:k = 1,用容量为 k 的最小堆
            // 使用一个含有 k 个元素的最小堆
            PriorityQueue<Integer> minHeap = new PriorityQueue<>(k, (a, b) -> a - b);
            for (int i = 0; i < k; i++) {
                minHeap.add(nums[i]);
            }
            for (int i = k; i < len; i++) {
                // 看一眼,不拿出,因为有可能没有必要替换
                Integer topEle = minHeap.peek();
                // 只要当前遍历的元素比堆顶元素大,堆顶弹出,遍历的元素进去
                if (nums[i] > topEle) {
                    minHeap.poll();
                    minHeap.add(nums[i]);
                }
            }
            return minHeap.peek();

        } else {
            // System.out.println("使用最大堆");
            assert k > len - k;
            // 特例:k = 100,用容量为 len - k + 1 的最大堆
            int capacity = len - k + 1;
            PriorityQueue<Integer> maxHeap = new PriorityQueue<>(capacity, (a, b) -> b - a);
            for (int i = 0; i < capacity; i++) {
                maxHeap.add(nums[i]);
            }
            for (int i = capacity; i < len; i++) {
                // 看一眼,不拿出,因为有可能没有必要替换
                Integer topEle = maxHeap.peek();
                // 只要当前遍历的元素比堆顶元素大,堆顶弹出,遍历的元素进去
                if (nums[i] < topEle) {
                    maxHeap.poll();
                    maxHeap.add(nums[i]);
                }
            }
            return maxHeap.peek();
        }
    }
}


【总结】
1.快排核心思想 找partition 随机化可避免极端情况
2.优先队列的使用 最大最小堆
//大堆
PriorityQueue<Integer> maxHeap = new PriorityQueue<>(capacity, (a, b) -> b - a);
//小堆
 PriorityQueue<Integer> minHeap = new PriorityQueue<>(k, (a, b) -> a - b);

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.assert 调试使用 程序或软件正式发布后需要关闭

在这里插入图片描述
在这里插入图片描述

转载链接:https://leetcode-cn.com/problems/kth-largest-element-in-an-array/solution/partitionfen-er-zhi-zhi-you-xian-dui-lie-java-dai-/

参考链接:https://blog.csdn.net/jeikerxiao/article/details/82262487
参考链接:https://www.cnblogs.com/wei-jing/p/10806236.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值