【问题描述】[中等]
【解答思路】
1. 动态规划
第 1 步:设计状态
第 2 步:状态转移方程
第 3 步:考虑初始化
第 4 步:考虑输出
时间复杂度:O(N^2) 空间复杂度:O(N)
public int numTrees(int n) {
int[] G = new int[n + 1];
G[0] = 1;
G[1] = 1;
for (int i = 2; i <= n; ++i) {
for (int j = 1; j <= i; ++j) {
G[i] += G[j - 1] * G[i - j];
}
}
return G[n];
}
2. 数学公式
时间复杂度:O(N) 空间复杂度:O(1)
public int numTrees(int n) {
// 提示:我们在这里需要用 long 类型防止计算过程中的溢出
long C = 1;
for (int i = 0; i < n; ++i) {
C = C * 2 * (2 * i + 1) / (i + 2);
}
return (int) C;
}
【总结】
1. 动态规划流程
第 1 步:设计状态
第 2 步:状态转移方程
第 3 步:考虑初始化
第 4 步:考虑输出
第 5 步:考虑是否可以状态压缩
2.卡塔兰数 Cn
3.二叉树 找规律 动态规划 画图递归
转载链接:https://leetcode-cn.com/problems/unique-binary-search-trees/solution/bu-tong-de-er-cha-sou-suo-shu-by-leetcode-solution/