阿里云数据科学家:学好以下七大技术,年薪50W+不是梦想

早在人类诞生之际,就已经学会使用大数据来服务我们的生活了。远古时代,人们结绳记事,通过结绳来记录日常生活。随着计算机和互联网技术的发展与普及,人们对大数据日益关心和重视,大数据技术也得到前所未有的研发和升级。我是大数据学习爱好者,建了一个分享群593188212 每天分享大数据学习资料和学习方法 ,学习感言,现在我们分享, 学习大数据开发前需要掌握哪些技能?

1. 数学知识 数学知识是数据分析师的基础知识。 对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。 对于高级数据分析师,统计模型相关知识是必备能力,线性代数(主要是矩阵计算相关知识)最好也有一定的了解。 而对于数据挖掘工程师,除了统计学以外,各类算法也需要熟练使用,对数学的要求是最高的。

奥数

2. 分析工具 对于初级数据分析师,玩转Excel是必须的,数据透视表和公式使用必须熟练,VBA是加分。另外,还要学会一个统计分析工具,SPSS作为入门是比较好的。 对于高级数据分析师,使用分析工具是核心能力,VBA基本必备,SPSS/SAS/R至少要熟练使用其中之一,其他分析工具(如Matlab)视情况而定。 对于数据挖掘工程师……嗯,会用用Excel就行了,主要工作要靠写代码来

分析工具

3. 编程语言 对于初级数据分析师,会写SQL查询,有需要的话写写Hadoop和Hive查询,基本就OK了。 对于高级数据分析师,除了SQL以外,学习Python是很有必要的,用来获取和处理数据都是事半功倍。当然其他编程语言也是可以的。 对于数据挖掘工程师,Hadoop得熟悉,Python/Java/C++至少得熟悉一门,Shell得会用……总之编程语言绝对是数据挖掘工程师的最核心能力了。

编程

4. 业务理解 业务理解说是数据分析师所有工作的基础也不为过,数据的获取方案、指标的选取、乃至最终结论的洞察,都依赖于数据分析师对业务本身的理解。 对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。 对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。 对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。

理解

5. 逻辑思维 这项能力在我之前的文章中提的比较少,这次单独拿出来说一下。 对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。 对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。 对于数据挖掘工程师,逻辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。

逻辑思维

6. 数据可视化 数据可视化说起来很高大上,其实包括的范围很广,做个PPT里边放上数据图表也可以算是数据可视化,所以我认为这是一项普遍需要的能力。 对于初级数据分析师,能用Excel和PPT做出基本的图表和报告,能清楚的展示数据,就达到目标了。 对于高级数据分析师,需要探寻更好的数据可视化方法,使用更有效的数据可视化工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。 对于数据挖掘工程师,了解一些数据可视化工具是有必要的,也要根据需求做一些复杂的可视化图表,但通常不需要考虑太多美化的问题。

数据可视化

7. 协调沟通 对于初级数据分析师,了解业务、寻找数据、讲解报告,都需要和不同部门的人打交道,因此沟通能力很重要。 对于高级数据分析师,需要开始独立带项目,或者和产品做一些合作,因此除了沟通能力以外,还需要一些项目协调能力。 对于数据挖掘工程师,和人沟通技术方面内容偏多,业务方面相对少一些,对沟通协调的要求也相对低一些。

沟通

阅读更多
上一篇前阿里云大数据架构师:想进去阿里云需要掌握什么技能
下一篇30周岁你该不该转行学习大数据,看以下分析就能看懂你会明白
想对作者说点什么? 我来说一句

关键路线java

2018年02月15日 237KB 下载

大数据路线

2018年02月15日 249KB 下载

没有更多推荐了,返回首页

关闭
关闭