当前搜索:

这是 隐马尔科夫模型(HMM) 的 2 个基本假设

这是 隐马尔科夫模型(HMM) 的 2 个基本假设 上一篇 1个例子解释 隐马尔科夫模型(HMM) 的 5 个基本要素 说了隐马尔可夫模型 (HMM) 的参数,细分的话,包括 5 个基本要素: 1). 隐含状态 S 这些状态之间满足马尔可夫性质,是马尔可夫模型中实际所隐含的状态。这些状态通常...
阅读(5) 评论(0)

1个例子解释 隐马尔科夫模型(HMM) 的 5 个基本要素

隐马尔可夫模型(Hidden Markov Model,HMM)是一个寻找事物在一段时间里的变化模式的统计学方法,它用来描述一个含有隐含未知参数的马尔可夫过程。其难点是从可观察的参数中确定该过程的隐含参数。然后利用这些参数来作进一步的分析。 HMM 现已成功地用于语音识别,自然语言处理,模式识别...
阅读(216) 评论(0)

新浪 机器学习算法岗 面试实录

这份面试实录出自 算法channel 关注粉丝: 地球村长,感谢提供的材料,经过小编编辑后与大家一起分享。 技术1面 1 Java水平怎么样? 2 问Python给自己打多少分?Python多线程怎么实现? 3 线程和进程的区别? 4 不同进程之间数据能共享吗? 5 Numpy和p...
阅读(58) 评论(0)

机器学习集成算法:XGBoost思想

机器学习集成算法:XGBoost思想01 — 回顾这几天推送了机器学习的降维算法,总结了特征值分解法,奇异值分解法,通过这两种方法做主成分分析(PCA)。大家有想了解的,可以参考: 数据预处理:PCA原理推导 数据降维处理:PCA之特征值分解法例子解析 数据降维处理:PCA之奇异值分解(...
阅读(238) 评论(0)

机器学习数据预处理:数据降维之PCA

请点击上面公众号,免费订阅。  《实例》阐述算法,通俗易懂,助您对算法的理解达到一个新高度。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来!01 — 回顾到现在,已经总结了机器学习的: 回归算法之最小二乘方,脊回归,套索回归; 分类算...
阅读(143) 评论(0)

高斯混合模型:不掉包实现多维数据聚类分析

《实例》阐述算法,通俗易懂,助您对算法的理解达到一个新高度。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来!01 — 回顾昨天实现推送了,GMM高斯混合的EM算法实现的完整代码,这是不掉包的实现,并且将结果和sklearn中的掉包实现做了比...
阅读(155) 评论(0)

机器学习高斯混合模型(后篇):GMM求解完整代码实现

《实例》阐述算法,通俗易懂,助您对算法的理解达到一个新高度。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来!01 — 回顾前面推送中,我们介绍了高斯混合模型(GMM)的聚类原理,以及聚类求解的公式推导,如果您想了解这部分,请参考之前的推送:...
阅读(408) 评论(0)

机器学习高斯混合模型(中篇):聚类求解

《实例》阐述算法,通俗易懂,助您对算法的理解达到一个新高度。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来! 01 — 回顾昨天,介绍了高斯混合模型(GMM)的一些有意思的小例子,说到高斯混合能预测出每个样本点属于每个簇的得分值,这个...
阅读(116) 评论(0)

机器学习高斯混合模型:聚类原理分析(前篇)

01 — 回顾近几天,分析了期望最大算法的基本思想,它是用来迭代求解隐式变量的利器,我们举例了两地的苹果好坏分布为例来求解隐式参数,苹果的出处,进而求出烟台或威海的苹果好坏的二项分布的参数:好果的概率。关于二项分布和离散式随机变量的基础理论知识,请参考: 机器学习储备(11):说说离散型随机...
阅读(116) 评论(0)

机器学习储备(12):二项分布的例子解析

01 — 二项分布如果实验满足以下两种条件: 在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立; 相互独立,与其它各次试验结果无关; 事件发生与否的概率在每一次独立试验中都保持不变。 则实验的结果对应的分布为二项分布。当试验次数为1时,二项分布服从0-1分布。0...
阅读(222) 评论(0)

机器学习储备(11):说说离散型随机变量

交流思想,注重分析,更注重通过实例让您通俗易懂。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来!01 — 包含的概念通过例子介绍以下几个主要概念: 随机变量的定义 不同的X取值也会不同 离散型随机变量 古典概率 离散型随机变量X=...
阅读(159) 评论(0)

机器学习期望最大算法:实例解析

01 回顾 已经分析了朴素贝叶斯分类,拉普拉斯修正,半朴素贝叶斯分类器,在这些理论阐述中,都带有详细的例子解释,通过例子理解相关的理论是一种快速消化公式和理论比较不错的方法。接下来,介绍一种非常经典的求解隐变量的算法,这也是一种经典的算法。让我们先从最大似然估计入手,在03节真正分析这种算法。 0...
阅读(103) 评论(0)

机器学习:单词拼写纠正器python实现

01 朴素贝叶斯分类实战前面介绍了贝叶斯的基本理论,朴素贝叶斯分类器,拉普拉斯修正,文章的链接如下: 机器学习:说说贝叶斯分类 朴素贝叶斯分类器:例子解释 朴素贝叶斯分类:拉普拉斯修正 在这3篇推送中用例子详细阐述了贝叶斯公式和朴素贝叶斯如何做分类,以及如何修正一些属性某些取值概率。下面,...
阅读(259) 评论(0)

朴素贝叶斯分类:拉普拉斯修正

拉普拉斯修正上面通过这个例子折射处一个问题:训练集上,很多样本的取值可能并不在其中,但是这不并代表这种情况发生的概率为0,因为未被观测到,并不代表出现的概率为0 。正如上面的样本,看其他两个属性很可能属于好苹果,但是再加上颜色:青色,这三个属性取值组合在训练集中并未出现过,所以朴素贝叶斯分类后,这...
阅读(245) 评论(0)

朴素贝叶斯分类器:例子解释

1 引言在昨天推送了用一个例子引入贝叶斯公式的基本思想,然后用贝叶斯公式对一个很简单的问题做分类,最后引出来一个问题:后验概率 P(c | x) 的求解转化为求解 P(c)和 P(x | c),P(c) 根据大数定律容易求得,所以 P(x | c)成为了最核心也是最迫切需要求解的问题。下面,借助一...
阅读(241) 评论(0)

机器学习:说说贝叶斯分类

1 进入例子假如我是一个质检员,现在接到了三箱零件需要检验,其中第一箱有10个零件,第二箱有20个零件,第三箱有15个。半小时过去了,检验的结果出炉,第一箱有1个不合格,第二箱有3个不合格,第三箱2个不合格。下午领导要来视察了,看看我验的货到底有没有问题,于是他随手拿了一个零件,我心里默默计算,领...
阅读(90) 评论(0)

机器学习:谈谈决策树

0 回顾前面谈了逻辑回归的基本原理及梯度下降推导过程,编码实现了逻辑回归的梯度下降算法,这是分类算法。今天,我们继续开启分类算法之旅,它是一种高效简介的分类算法,后面有一个集成算法正是基于它之上,它是一个可视化效果很好的算法,这个算法就是决策树。 1 一个例子有一堆水果,其中有香蕉,苹果,杏这三类...
阅读(585) 评论(0)

机器学习储备(9):matplotlib绘图原理及实例

matplotlibmatplotlib 的对象体系非常严谨,为我们提供了巨大的方便性和使用效率。用户在熟悉了核心对象之后,可以轻易的定制图像。先来看看 Figure类,Axes类,直接调用Figure()构造函数,便得到一个fig实例,然后调用add_axes得到 axes实例。fig =...
阅读(4486) 评论(0)

机器学习逻辑回归:原理推导

前言到现在为止,我们通过大约1周的时间初步对机器学习是怎么一回事算是有一些基本的理解了,从最基本的线性回归入手,讨论了如何在拿到一堆数据时,先进行数据预处理(暂时未详细阐述,会在以后某个时间段详细论述),然后再假设模型(model)为线性模型,再带入数据通过直接求解法和梯度下降法求解模型的各个特征...
阅读(4452) 评论(0)

机器学习:正则化到底是怎么一回事?

1 L1和L2正则化项 2 L1和L2的作用 3 L1如何做到稀疏 4 L2如何做到防止过拟合 4 总结 本文首发在《算法channel》公众号在最近的推送中,先后总结了最小二乘法的原理,两个求解方法:直接法和梯度下降,最后利用这两种思路进行了python实战;之后阐述了OLS算法使用的前...
阅读(4945) 评论(0)
    算法channel

    交流思想,注重分析,实例阐述,通俗易懂,包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,Kaggle 实战。期待您的到来!

    算法与人工智能交流群:646901659

    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 33万+
    积分: 7782
    排名: 3390
    博客专栏