原文地址:http://zh.wikipedia.org/zh/外排序
外排序(External sorting)是指能够处理极大量数据的排序算法。通常来说,外排序处理的数据不能一次装入内存,只能放在读写较慢的外存储器(通常是硬盘)上。外排序通常采用的是一种“排序-归并”的策略。在排序阶段,先读入能放在内存中的数据量,将其排序输出到一个临时文件,依此进行,将待排序数据组织为多个有序的临时文件。尔后在归并段阶将这些临时文件组合为一个大的有序文件,也即排序结果。
[编辑]外归并排序
外排序的一个例子是外归并排序(External merge sort),它读入一些能放在内存内的数据量,在内存中排序后输出为一个顺串(即是内部数据有序的临时文件),处理完所有的数据后再进行归并。[1][2]比如,要对 900
- 读入 100 MB 的数据至内存中,用某种常规方式(如快速排序、堆排序、归并排序等方法)在内存中完成排序。
- 将排序完成的数据写入磁盘。
- 重复步骤 1 和 2 直到所有的数据都存入了不同的 100 MB 的块(临时文件)中。在这个例子中,有 900 MB 数据,单个临时文件大小为 100 MB,所以会产生 9 个临时文件。
- 读入每个临时文件(顺串)的前 10 MB ( = 100 MB / (9 块 + 1))的数据放入内存中的输入缓冲区,最后的 10 MB 作为输出缓冲区。(实践中,将输入缓冲适当调小,而适当增大输出缓冲区能获得更好的效果。)
- 执行九路归并算法,将结果输出到输出缓冲区。一旦输出缓冲区满,将缓冲区中的数据写出至目标文件,清空缓冲区。直至所有数据归并完成。
为了增加每一个有序的临时文件的长度,可以采用置换选择排序(Replacement selection sorting)。它可以产生大于内存大小的顺串。具体方法是在内存中使用一个最小堆进行排序,设该最小堆的大小为
- 初始时将输入文件读入内存,建立最小堆。
- 将堆顶元素输出至输出缓冲区。然后读入下一个记录:
- 若该元素的关键码值不小于刚输出的关键码值,将其作为堆顶元素并调整堆,使之满足堆的性质;
- 否则将新元素放入堆底位置,将堆的大小减 1。
- 重复第 2 步,直至堆大小变为 0。
- 此时一个顺串已经产生。将堆中的所有元素建堆,开始生成下一个顺串。[3]
此方法能生成平均长度为
[编辑]附加的步骤
上述例子的外排序有两个步骤:排序和归并。我们用一次多路归并就完成了所有临时文件的归并,而并非按内存中的二路归并那样,一次归并两个子串,耗费
不过,在上述方法中也存在权衡。当临时文件(顺串)的数量继续增大时,归并时每次可从顺串中读入的数据减少了。比如说,50 GB 的数据量,100 MB 的可用内存,这种情况下用一趟多路归并就显得不划算。读入很多的顺串花费的时间占据了排序时间的大部分。这时,我们可以用多次(比如两次)归并来解决这个问题。
这时排序算法变为下述这样:
- 第一步不变。
- 将小的顺串合并为大一些的顺串,适当减小顺串的数目。
- 将剩余的大一些的顺串归并为最终结果。
和内排序一样,高效的外排序所耗的时间依然是
[编辑]优化性能
计算机科学家吉姆·格雷的
- 并行计算
- 提高硬件速度
- 提高软件速度
- 对于某些特殊数据,在第一阶段的排序中使用基数排序。
- 压缩输入输出文件和临时文件。
[编辑]其他算法
外归并排序法并不是唯一的外排序算法。另外还有外分配排序,其原理类似于内排序中的桶排序。在归并排序和桶排序之间存在数学上的某种对偶性。[6]
[编辑]外部链接
[编辑]参考
- ^
Donald Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching, Second Edition. Addison-Wesley, 1998, ISBN 0-201-89685-0, Section 5.4: External Sorting, pp.248–379. - ^
* Ellis Horowitz and Sartaj Sahni, Fundamentals of Data Structures, H. Freeman & Co., ISBN 0-7167-8042-9. - ^
张铭、王腾蛟、赵海燕. 数据结构与算法. 北京: 高等教育出版社. 2008: pp.246-248. ISBN 978-7-04-023961-4. - ^
Nikolas Askitis, OzSort 2.0: Sorting up to 252GB for a Penny - ^
Rasmussen et al., TritonSort - ^
J. S. Vitter, Algorithms and Data Structures for External Memory, Series on Foundations and Trends in Theoretical Computer Science, now Publishers, Hanover, MA, 2008, ISBN 978-1-60198-106-6.