(五)决策树 基本的分类与回归方法,可转化未为if-then规则的集合,可看作定义在特征空间划分上的类的条件概率分布。的本质从训练数据集中归纳出一组分类规则;目的构建一个与训练数据拟合很好且复杂度小的决策树。决策树的生成对应于模型的局部选择;决策树的简直对应于模型的全局选择。-目标决策树与训练集数据矛盾较小,同时具有很好的泛化能力。-常用算法ID3、C4.5、CART。-优点模型具有可读性,分类速度快。...
(四)朴素贝叶斯法 朴素贝叶斯法是生成学习法,由训练数据学习联合概率分布P(X|Y),然后求后验概率分布P(Y|X),其优点。估计方法极大似然估计(可能出现估计概率值为0的情况)、贝叶斯估计。缺点分类的特性不一定很高。...
深度学习数学基础 线性代数张量:一般的,一个数组中的元素分布在若干维坐标的规则网格中,我们称之为张量。矩阵与向量相加:在深度学习中,我们允许矩阵和向量相加,产生另一个矩阵:C=A+b,其中Ci,j=Ai,j+bj。换言之,向量b和矩阵A的每一行相加。(这里隐式地复制向量b到很多位置的方式,称为广播)元素对应乘积(Hadamard乘积):两个矩阵中对应元素的乘积。矩阵乘积满足结合律,但是不满足交换律。标量可以看作只有一个元素的矩阵,标量的转置等于它本身。生成子空间:一组向量的生成子空间,是原始向量线性组合后所能抵达的点的集合。
监督学习方法与无监督学习方法总结 (一)监督学习10种监督学习方法特点的概括汇总如下表:(二)无监督学习八种常用的统计机器学习方法,即聚类方法(包括层次聚类与k均值聚类)、奇异值分解(SVD)、主成分分析(PCA)、潜在语义分析(LSA)、概率潜在语义分析(PLSA)、马尔可夫链蒙特卡罗法(MCMC)、潜在狄利克雷分配(LDA)、PageRank算法 还有另外三种常用的统计机器学习方法,即非负矩阵分解(NMF)、变分推理、幂法 这些方法常用于无监督学习的聚类、降维、话题分析以及图分析矩阵分解基于不同假设:SVD基于正交假设,即分
面向无人驾驶时空同步约束制导的安全强化学习Spatio-Clock Synchronous Constraint Guided Safe Reinforcement Learning for Aut 面向无人驾驶时空同步约束制导的安全强化学习Spatio-Clock Synchronous Constraint Guided Safe Reinforcement Learning for Autonomous Driving摘要:无人驾驶系统综合了软件和硬件复杂的交互过程,在系统设计阶段,形式化方法可以保证系统满足逻辑规约和安全需求;在系统运行阶段,深度强化学习被广泛应用于无人驾驶系统决策中.然而,在面对没有经验的场景和复杂决策任务时,基于黑盒的深度强化学习系统并不能保证系统的安全性和复杂任务奖励函数
(二)感知机 感知机:根据输入实例的特征向量x对其进行二类分类的线性分类模型感知机的策略:极小化损失函数(损失函数对应于误分点到分离超平面的总距离)感知机学习算法:基于随机梯度下降的对损失函数的最优化算法,有原始形式和对偶形式例题:...
(一)概论 统计学习的定义:计算机通过运用数据及统计方法提高系统性能的学习统计学习的对象:数据统计学习的目标在于:从假设空间中选取最优模型训练集用来训练模型,验证集用来选择模型,测试集用于对学习方法的评估。统计学习的方法:基于数据构建概率统计模型从而对数据进行预测与分析实现方法的步骤:①得到一个有限的训练数据集合②确定包含所有可能模型的假设空间(学习模型的集合)③确定模型选择的准则(学习的策略)④实现求解最优模型的算法(学习的算法)⑤利用学习的最优模型对新数据进行预测和分析机器学习的分类:主要包括
一种新的无监督前景目标检测方法 A New Unsupervised Foreground Object Detection Method 14.一种新的无监督前景目标检测方法A New Unsupervised Foreground Object Detection Method摘要:针对基于无监督特征提取的目标检测方法效率不高的问题,提出一种在无标记数据集中准确检测前景目标的方法.其基本出发点是:正确的特征聚类结果可以指导目标特征提取,同时准确提取的目标特征可以提高特征聚类的精度.该方法首先对无标记样本图像进行局部特征提取,然后根据最小化特征距离进行无监督特征聚类.将同一个聚类内的图像两两匹配,将特征匹配的重现程度作为特征权重,最后根据更
APP测试(四)弱网测试 1、为什么要做弱网测试当前APP网络环境比较复杂,网络制式有2G、3G、4G网络,还有越来越多的公共Wi-Fi。不同的网络环境和网络制式的差异,都会对用户使用app造成一定影响。另外,当前app使用场景多变,如进地铁、上公交、进电梯等,使得弱网测试显得尤为重要。2、如何做弱网测1、SIM卡的网络切换:手机-设置-移动网络设置-网络类型选择2、具体弱网场景测试,常见场景包括:地铁/巴士、电梯、楼梯间、停车场3、使用虚拟机模拟网络速度,如用树莓派搭建的弱网测试仪4、使用软件进行网络代理,模拟不同
APP测试(二)测试过程 1、需求评审作用充分理解需求,未后续的测试用例编写打下基础基于对需求细节的了解,可以更准确地评估测试的要点和工作量发现需求中模糊不清的地方,预防缺陷的产生流程准备(需求文档、人员)-审批-预审-评审会议-修改-复审-总结2、测试计划1、5W1Hwhy:为什么进行这些测试what:测试哪些方面,不同阶段的工作内容when:测试不同阶段的起止时间where:相应文档,缺陷的存放位置,测试环境等who:项目有关人员组成,安排哪些测试人员进行测试how:如何去做,使用那些测试工具及测试方
APP测试(一)测试基础 1、手机要关注的信息厂商/品牌系统和版本尺寸分辨率市场占有率2、安卓手机的架构Applications:日历、联系人等(Java编写)应用程序框架开发,开发人员可以访问框架API系统运行库,为开发者提供服务Linux内核.........
接口测试(三)测试基础 概念接口:是一组定义、程序及协议的集合,通过API接口实现计算机软件之间的相互通信分类1、按对象分类程序内部接口程序外部接口2、按协议分类WebService接口:Webservice是系统对外的接口HTTP接口:基于HTTP协议的开发接口.接口测试:测试系统组件间接口的一种测试主要用于外部系统与系统之间以及内部各个子系统之间的交互点,定义特定的交互点,然后通过这些交互点来,通过一些特殊的规则也就是协议,来进行数据之间的交互。重点检查数据的交换传递和控制管理过程、系统间的逻辑依赖关系
接口测试(二)cookie、缓存、session、token cookiecookie的概念Cookie是客户端保存用户信息的一种机制,用来记录用户的一些信息,也是实现Session的一种方式。Cookie存储的数据量有限,且都是保存在客户端浏览器中。不同的浏览器有不同的存储大小,但一般不超过4KB。(使用Cookie实际上只能存储一小段的文本信息)cookie的产生当用户第一次访问并登录一个网站的时候,cookie的设置以及发送会经历以下4个步骤:客户端发送一个请求到服务器;服务器发送一个HttpResponse响应到客户端,其中包含Set-Cook
接口测试(一)网络基础 1、网络分层模型OSI七层模型第一层 (物理层): 透明传输原始比特流第二层 (数据链路层): 在相邻结点之间无差错传输帧第三层 (网络层):在源节点和目的结点之间选择路由和控制拥塞第四层 (传输层): 在端到端之间可靠传输报文第五层 (会话层): 进行会话管理和会话同步第六层 (表示层):数据格式转换、数据加密和解密第七层(应用层):为用户提供网络接口TCP/IP模型2、协议HTTP协议作用:规定服务器和浏览器信息传递规范特点:一个请求只能有一个响应;响应是被动的,不能主动发
一种新的无监督前景目标检测方法 A New Unsupervised Foreground Object Detection Method 14.一种新的无监督前景目标检测方法A New Unsupervised Foreground Object Detection Method摘要:针对基于无监督特征提取的目标检测方法效率不高的问题,提出一种在无标记数据集中准确检测前景目标的方法.其基本出发点是:正确的特征聚类结果可以指导目标特征提取,同时准确提取的目标特征可以提高特征聚类的精度.该方法首先对无标记样本图像进行局部特征提取,然后根据最小化特征距离进行无监督特征聚类.将同一个聚类内的图像两两匹配,将特征匹配的重现程度作为特征权重,最后根据
深度神经网络压缩与加速综述 Deep Neural Network Compression and Acceleration: A Review 13.深度神经网络压缩与加速综述Deep Neural Network Compression and Acceleration: A Review摘要:深度神经网络在人工智能的应用中,包括计算机视觉、语音识别、自然语言处理方面,取得了巨大成功.但这些深度神经网络需要巨大的计算开销和内存存储,阻碍了在资源有限环境下的使用,如移动或嵌入式设备端.为解决此问题,在近年来产生大量关于深度神经网络压缩与加速的研究工作.对现有代表性的深度神经网络压缩与加速方法进行回顾与总结,这些方法包括了参数剪枝、参数共享、低秩
边云协同计算中基于预测的资源部署与任务调度优化 Resource Deployment with Prediction and Task Scheduling Optimization in Edge 12.边云协同计算中基于预测的资源部署与任务调度优化Resource Deployment with Prediction and Task Scheduling Optimization in Edge Cloud Collaborative Computing摘要:数据集中处理的云计算模式提供交互迅速、绿色高效的多样化应用服务面临新挑战.将云计算能力扩展到边缘设备,提出了边云协同计算框架;设计了基于任务预测的资源部署算法,在云服务中心通过二维时间序列对任务进行预测,结合分类聚合、延迟阈值判定等优化边