从地球、水准面、坐标系和平面地图说起

本文探讨了如何通过大地水准面和地球椭球体将不规则的地球表面转换为可测量的球体,然后介绍经纬度和高程的标准化,以及地图投影技术,如墨卡托投影和WebMercator在制作平面地图中的应用。重点提及了WGS84坐标系在全球地图和数据处理中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

众所周知,地球确实是个球
众所周知,二维地图是平面

如果我们以地球的球心为坐标系原点,赤道平面为 xoy 平面,地理北极为 z 轴,即可建立一个空间直角坐标系,或者是一个球坐标系。球坐标系用方位角,极角和距离来表示,这样就引出了我们熟悉的:

经度------------longitude
纬度
------------latitude
高程
------------altitude

把一个规规矩矩的球体表面直接展平地图,大概变成这样:
在这里插入图片描述

这样的生硬展开切断了地球表面的很多道路、河流和地物,是我们不可接受的,我们还是想要一张方方正正的地图。

而且毕竟地球的表面沟沟坎坎、自己也不是个规规矩矩的球体,所以牺牲一部分精度,获得一张能让人看明白的地图,在大部分时候更有助于我们完成任务。


那么如何把地球坑坑洼洼的表面展开成平面地图呢?


地球太大了,那就先把不平的表面拉平,变成一个平滑的球

我们假设海水处于完全静止的平衡状态,从海平面延伸到所有大陆下部,与地球重力方向处处正交的一个连续、闭合的曲面,这就是大地水准面。

此时,地球形状接近一个扁率极小的椭圆绕短轴旋转所形成的规则椭球体,这个椭球体就是地球椭

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值