zhyuxie
码龄15年
关注
提问 私信
  • 博客:442,022
    社区:29
    442,051
    总访问量
  • 3
    原创
  • 1,799,254
    排名
  • 151
    粉丝
  • 2
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2010-07-18
博客简介:

zhyuxie的专栏

查看详细资料
个人成就
  • 获得610次点赞
  • 内容获得18次评论
  • 获得2,887次收藏
创作历程
  • 1篇
    2019年
  • 1篇
    2018年
  • 1篇
    2015年
TA的专栏
  • 机器学习
    2篇
  • 深度学习
    1篇
  • NLP
    1篇
  • 迁移学习
    1篇
兴趣领域 设置
  • 人工智能
    机器学习深度学习神经网络自然语言处理tensorflowpytorchnlp
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

迁移学习概述(Transfer Learning)

迁移学习概述(Transfer Learning)迁移学习概述背景定义及分类关键点基于实例的迁移基于特征的迁移特征选择特征映射基于共享参数的迁移深度学习和迁移学习结合Pre-training+Fine-tuningSDA (Stacked Denoising Auto-encoder )DANN (Domain-Adversarial Neural Network)参考文献迁移学习概述背景...
原创
发布博客 2019.01.06 ·
430383 阅读 ·
601 点赞 ·
16 评论 ·
2884 收藏

在NLP中广泛应用的transformer(Self-Attention)剖析笔记

在NLP中如日中天的transformer笔记参考文献自从谷歌在2017NIPS上发表paper Attention is All You Need 以来,最近很多NLP场景已经应用了transformer,包括最近很火的GPT/BERT,本文将以这篇paper为主并结合github上高star的实现源代码 transformer 一起梳理一下self-attention机制在trans...
原创
发布博客 2018.12.21 ·
9062 阅读 ·
8 点赞 ·
2 评论 ·
40 收藏

FP-growth

步骤如下:1. 去掉不满足最小支持度的元素项2. 对事务记录过滤和排序,构建FP树排序基于元素项的绝对出现频率来进行;构建FP树的过程:从空集开始,向其中不断加频繁项集。过滤、排序后的事务依次添加到树中,如果树中已存在现有元素,则增加现有元素的值;如果现有元素不存在,则向树添加一个分枝。3. 抽取条件模式基首先从保存在头指针表中的单个频繁元素项开始,对于每一个元素项
原创
发布博客 2015.05.21 ·
832 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏