怎样辨别信用卡的真假?

<br /><br />信用卡几乎人人都有,但是你知道卡面上那一长串数字的含义吗?不仅不同位数的数字有不同含义,而且它们之间还有某些巧妙的数学关系。赶紧来看看吧!<br />在我印象中国内的信用卡大多数都是16位的,虽然格式不尽相同,但是它们肯定符合上面所讲的大...

2011-01-26 09:14:00

阅读数:416

评论数:0

C++中几个比较不常用的关键字

mutable关键字 关键字mutable是C++中一个不常用的关键字,他只能用于类的非静态和非常量数据成员 我们知道一个对象的状态由该对象的非静态数据成员决定,所以随着数据成员的改变, 对像的状态也会随之发生变化! 如果一个类的成员函数被声明为const类型,表示该函数不会...

2011-01-10 14:58:00

阅读数:219

评论数:0

C#设计模式(10)-Adapter Pattern

Referrence: http://www.cnblogs.com/zhenyulu/articles/39386.html 结构模式(Structural Pattern)描述如何将类或者对象结合在一起形成更大的结构。结构模式描述两种不同的东西:类与类的实例。根据这一点,结构模式可以分为类...

2011-01-10 14:56:00

阅读数:239

评论数:0

interface 与 delegate

Quoted From : http://www.sfzj.com.cn/BT/6/2007/2007120625540.html interface与delegate是有区别的,interface 面向于类的,实现了某interface的类,该interface可以当作该类的实例的对象指针来...

2011-01-10 14:55:00

阅读数:381

评论数:0

IF I Let you GO

http://www.tingoh.com/View.aspx?id=892 Day after day, time pass away And I just can’t get you off my mind Nobody knows, I hide it insid...

2011-01-10 14:54:00

阅读数:269

评论数:0

What is your Recovery Rate?

by Graham and Julie Harris What is your recovery rate? How long does it take you to recover from actions and behaviours that upset you? Minutes? Ho...

2011-01-10 14:54:00

阅读数:587

评论数:0

Cry on my shoulder

If the hero never comes to you  If you need someone you"re feeling blue  If you"re away from love and you"re alone  If you call your f...

2011-01-10 14:53:00

阅读数:348

评论数:0

小罗走了

小罗走了。2007的巴萨,已经不复存在,昔日的天才少年梅西,如今已经成为无可争议的耀眼明星。2007年,毕业之年,那一年经历太多的事情,有初入社会的迷茫,有对于朋友的依恋,又无法割舍的大学情节,是那一年的巴萨,那一年的小罗,让我获得短暂的释放,给我带来轻松和愉悦。 小罗,在经历顶峰之后,开始...

2011-01-10 14:53:00

阅读数:390

评论数:0

Immanuel Kant and Russell

伊曼努尔·康德(Immanuel Kant,1724年4月22日-1804年2月12日)德国哲学家,德国古典哲学创始人。他被认为是对现代欧洲最具影响力的思想家之一,也是启蒙运动最后一位主要哲学家。 康德哲学理论的一个基本出发点是,认为将经验转化为知识的理性(即“范畴”)是人与生俱来的,没有先天的...

2011-01-10 14:52:00

阅读数:2661

评论数:0

How to determine whether there are circles in a singly linked list?

How to determine whether there are circles in a singly linked list? Answer:let to point p1 ,and p1 , p1 travels the list with one step length ,and p...

2011-01-10 14:51:00

阅读数:313

评论数:0

My Heart Will Go On

Every night in my dreams I see you, I feel you That is how I know you go on Far across the distance And spaces between us ...

2011-01-10 14:51:00

阅读数:441

评论数:0

FW: ۰•● 守护我的爱情 ●•

凌晨三点, 在梦与不梦之间….. 我拖着疲倦的身躯醒了…. . 一次一次的拨打着你的手机, 一次一次的传来电脑那甜美的声音. "您好,您所拨打的电话已关机!" ...

2011-01-10 14:50:00

阅读数:282

评论数:0

FW:理解矩阵(一)

BY 孟岩 前不久chensh出于不可告人的目的,要充当老师,教别人线性代数。于是我被揪住就线性代数中一些务虚性的问题与他讨论了几次。很明显,chensh觉得,要让自己在讲线性代数的时候不被那位强势的学生认为是神经病,还是比较难的事情。 可怜的chensh,谁让你趟这个地雷阵?!色令智昏啊! ...

2011-01-10 14:49:00

阅读数:340

评论数:0

Six Rules of office Romance

Office romance is fairly common these days as the office is where we spend so much of our time. What’s your opinion about office romance Do y...

2011-01-10 14:49:00

阅读数:403

评论数:0

FW:理解矩阵(三)(1)

这两篇文章发表于去年的4月。在第二部分结束的时候,我说: ….. 首先来总结一下前面两部分的一些主要结论: 1. 首先有空间,空间可以容纳对象运动的。一种空间对应一类对象。 2. 有一种空间叫线性空间,线性空间是容纳向量对象运动的。 3. 运动是瞬时的,因此也被称为变换。 ...

2011-01-10 14:48:00

阅读数:327

评论数:0

FW:理解矩阵(二)

By 孟岩 接着理解矩阵。 上一篇里说“矩阵是运动的描述”,到现在为止,好像大家都还没什么意见。但是我相信早晚会有数学系出身的网友来拍板转。因为运动这个概念,在数学和物理里是跟微积分联系在一起的。我们学习微积分的时候,总会有人照本宣科地告诉你,初等数学是研究常量的数学,是研究静态的数学,高等数...

2011-01-10 14:48:00

阅读数:351

评论数:0

CGX’s Apology

Today I’ve come back to Hong Kong to stand before you, and account for myself; I’ve never escaped away from my responsibility. During the past fe...

2011-01-10 14:47:00

阅读数:197

评论数:0

FW:理解矩阵(三)(2)

By 孟岩 回过头来说变换的问题。我刚才说,“固定坐标系下一个对象的变换等价于固定对象所处的坐标系变换”,那个“固定对象”我们找到了,就是那个向量。但是坐标系的变换呢?我怎么没看见? 请看:        Ma = Ib 我现在要变M为I,怎么变?对了,再前面乘以个M-1,也就是...

2011-01-10 14:47:00

阅读数:297

评论数:0

Error usage of Smart Point

ISecurity * piSecurity; piPS->get_Security( &piSecurity ); copied from comptr let the reference count plus one but without r...

2011-01-10 14:46:00

阅读数:158

评论数:0

Answer Wisely

> > 问题一:你爱我吗? > > > 错误答案A:'爱。' > > > 错误答案B:'这还用问吗?' > > > 错误答案C:'你烦不烦啊? > > > 标准答案:目光怜爱的望着对...

2011-01-10 14:45:00

阅读数:162

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭