git submodules Git submodules使用方法1.构建submodule实例Step1:下载git父仓库cd /root/workspacegit clone https://github.com/daneren/main_project.gitStep2:添加git子仓库cd /root/workspace/main_projectgit submodule add https://github.com/daneren/sub_project.gitStep3:初始化mian_projectg
ubuntu16.04升级Python3.5到Python3.7 ubuntu16.04升级Python3.5到Python3.7ubuntu16.04自带python有两个版本,一个2版本,使用的是python;另一个是3版本,使用的是python3。简易安装python后得到的3版本的版本号是python3.5。可以使用下面的命令查看py版本:python3 --version因为版本内容/接口等的不同,需要将其升级到更高的版本操作如下:1、安...
python中os.path模块下的函数总结 #coding:utf-8import ospath = 'C:\Python27\Lib\site-packages\myLibrary'print os.path.abspath(path) #返回绝对路径print os.path.basename(path) #返回文件名'os.path.commonprefix(list) #返回list(多个路径)中,所有path共有的...
torch.triu(input, diagonal=0, out=None) torch.triu(input, diagonal=0, out=None) → Tensor返回矩阵上三角部分,其余部分定义为0。Parameters:input (Tensor) – the input tensordiagonal (int, optional) – the diagonal to considerout (Tensor, optional) – the out...
numpy.tile(A, reps) numpy.tile(A, reps)Parameters: A : The input array.reps : The number of repetitions of A along each axisimport torchimport numpy as npx = torch.from_numpy(np.arange(4).reshape((1, 4)))print('...
numpy.delete(arr, obj, axis=None) numpy.delete(arr, obj, axis=None)arr:输入矩阵obj:在什么位置处理axis:这是一个可选参数,axis = None,1,0axis=None:arr会先按行展开,然后按照obj,删除第obj-1(从0开始)位置的数,返回一个行矩阵。axis = 0:按行删除axis = 1:按列删除import torchimport numpy as np...
numpy.ravel(a, order='C') numpy.ravel(a, order=‘C’)a是要进行改变形状的数组order : {‘C’,’F’, ‘A’, ‘K’}, optional由ravel()产生的数组中元素的顺序通常是“C风格”,也就是说,最右边的索引“改变最快”,所以[0,0]之后的元素是[0,1] 。如果数组被重新塑造成其他形状,数组又被视为“C-style”。NumPy通常创建按此顺序存储的数组,因此r...
torch.clamp(input, min, max, out=None) torch.clamp(input, min, max, out=None) → Tensor将输入input张量每个元素的夹紧到区间 [min,max],并返回结果到一个新张量。input={min,if input <= mininput,if min<input <maxmax,if i...
torch.tensor.view(*args) view(*args) → Tensor返回一个有相同数据但大小不同的tensor。 返回的tensor必须有与原tensor相同的数据和相同数目的元素,但可以有不同的大小。一个tensor必须是连续的contiguous()才能被查看。import torchx = torch.randn(4, 5)print('tensor原型:',x)print('tensor维度变换,由(4...
torch.sum(input, dim, out=None) torch.sum(input, dim, out=None) → Tensorinput (Tensor) – 输入张量dim (int) – 缩减的维度out (Tensor, optional) – 结果张量代码:import torchx = torch.randn(4, 5)print(x)print(x.sum(0)) #按列求和print(x.sum(1))...
torch.cat(inputs, dimension=0) 参数:inputs (sequence of Tensors) – 可以是任意相同Tensor 类型的python 序列dimension (int, optional) – 沿着此维连接张量序列代码import torchx = torch.randn(2, 3)print(torch.cat((x, x, x))) #默认按行连接张量print(torch.cat((x...
Python:super( test, self).__init__() python中的super( test, self).init()首先找到test的父类(比如是类A),然后把类test的对象self转换为类A的对象,然后“被转换”的类A对象调用类A对象自己的__init__函数....
莫烦PYTHON之Git版本管理学习笔记 莫烦PYTHON之Git版本管理学习笔记创建/修改版本库创建/修改版本库首先创建一个文件夹用于你的git版本库。E:\Test_gitgit 中添加用户名 和 用户:$ git config --global user.name “xxx”$ git config --global user.email “xxx”初始化版本库$ git init新建 1.py$ touch 1...
Andrew Ng机器学习课程笔记(十九)之强化学习 PrefaceMarkov Decision ProcessesMDP定义MDP例子MDP过程Value FunctionValue IterationPolicy IterationPrefaceMarkov Decision Processes(MDP,马尔科夫决策过程) Value Function(价值函数) Value Iteration(值...
Andrew Ng机器学习课程笔记(十八)之无监督学习之独立成份分析 PrefaceCocktail Party ProblemICA AmbiguitiesDensities FunctionLinear TransformationsIndependent Component AnalysisPrefaceCocktail Party Problem(鸡尾酒宴会问题) ICA Ambiguities(ICA不确定性) D...
Andrew Ng机器学习课程笔记(十七)之无监督学习之主成份分析与降维 PrefacePrincipal Components AnalysisProblemNormalize Mean and VarianceFor ExamplePrincipal Components AnalysisPrefacePrincipal Components Analysis(主成份分析)Principal Components Analy...
Andrew Ng机器学习课程笔记(十六)之无监督学习之因子分析模型与EM算法 PrefaceJensen’s InequalityExpectation-Maximization AlgorithmPrefaceFactor Analysis(因子分析模型)EM Algorithm for Factor AnalysisJensen’s InequalityExpectation-Maximization Algorithm...
Andrew Ng机器学习课程笔记(十五)之无监督学习之混合贝叶斯模型与EM算法 PrefaceJensen’s InequalityExpectation-Maximization AlgorithmPrefaceJensen’s Inequality(Jensen不等式) Expectation-Maximization Algorithm(EM算法)Jensen’s InequalityExpectation-Maximizati...