目录
一、案例背景
近年来,随着人们生活水平的提高和情感需求的增长,宠物经济呈现出蓬勃发展的态势。从宠物食品、用品到宠物医疗、美容、培训等服务,宠物经济涵盖了多个领域。然而,行业的快速发展也带来了市场竞争加剧、服务质量参差不齐等问题。通过 Python 对宠物经济行业相关数据进行深入分析,有助于了解行业现状、把握市场趋势、发现潜在商机,为宠物企业制定战略、优化产品和服务提供数据支持。
二、代码实现
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import requests
from bs4 import BeautifulSoup
2.1 数据收集
数据来源包括行业研究报告网站(如艾媒咨询、华经产业研究院)、电商平台销售数据、社交媒体上的宠物相关话题讨论以及宠物协会发布的统计信息。
- 从艾媒咨询网站抓取宠物经济市场规模数据:
url = 'https://www.iimedia.cn/research/pet_economy.html'
headers = {
'User - Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
}
response = requests.get(url, headers = headers)
soup = BeautifulSoup(response.text, 'html.parser')
market_size_data = []
div = soup.find('div', class_='market - size - container')
items = div.find_all('li')
for item in items:
year = item.find('span', class_='year').text.strip()
market_size = float(item.find('span', class_='size').text.strip().replace('亿元', ''))
market_size_data.append({'Year': year, 'Market_Size': market_size})
market_size_df = pd.DataFrame(market_size_data)
- 从电商平台 API 获取宠物用品销售数据(假设已有 API 接口,实际需申请权限):
import json
api_url = 'https://api.ecommerceplatform.com/pet_products_sales'
headers = {
'Authorization': 'your_api_key',
'Content - Type': 'application/json'
}
response = requests.get(api_url, headers = headers)
if response.status_code == 200:
sales_data = json.loads(response.text)
sales_df = pd.DataFrame(sales_data)
else:
print('Failed to get sales data')
2.2 数据探索性分析
# 查看市场规模数据基本信息
print(market_size_df.info())
# 查看销售数据基本信息
print(sales_df.info())
# 分析宠物经济市场规模随时间变化趋势
market_size_df['Year'] = pd.to_numeric(market_size_df['Year'])
plt.figure(figsize=(12, 6))
sns.lineplot(x='Year', y='Market_Size', data=market_size_df)
plt.title('Trend of Pet Economy Market Size')
plt.xlabel('Year')
plt.ylabel('Market Size (billion yuan)')
plt.show()
# 查看不同类型宠物用品销售数量分布
product_count = sales_df['Product_Type'].value_counts()
plt.figure(figsize=(10, 6))
sns.barplot(x=product_count.index, y=product_count.values)
plt.title('Distribution of Pet Product Sales by Type')
plt.xlabel('Product Type')
plt.ylabel('Sales Count')
plt.xticks(rotation=45)
plt.show()
2.3 数据清洗
# 市场规模数据清洗
# 检查并处理缺失值
market_size_df.dropna(inplace = True)
# 去除重复记录
market_size_df = market_size_df.drop_duplicates()
# 销售数据清洗
# 处理异常销售数据
sales_df = sales_df[(sales_df['Sales_Volume'] > 0) & (sales_df['Price'] > 0)]